Upload metrics.py with huggingface_hub
Browse files- metrics.py +273 -141
metrics.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
import itertools
|
| 2 |
import re
|
| 3 |
import string
|
| 4 |
import uuid
|
|
@@ -30,7 +29,7 @@ from .operators import CopyFields
|
|
| 30 |
from .random_utils import get_seed
|
| 31 |
from .settings_utils import get_settings
|
| 32 |
from .stream import MultiStream, Stream
|
| 33 |
-
from .type_utils import isoftype, to_float_or_default
|
| 34 |
|
| 35 |
logger = get_logger()
|
| 36 |
settings = get_settings()
|
|
@@ -75,6 +74,86 @@ class Metric(Artifact):
|
|
| 75 |
def main_score(self):
|
| 76 |
pass
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def consume_stream(self, stream: Stream):
|
| 79 |
references = []
|
| 80 |
predictions = []
|
|
@@ -335,6 +414,8 @@ class GlobalMetric(SingleStreamOperator, MetricWithConfidenceInterval):
|
|
| 335 |
n_resamples: int = OptionalField(
|
| 336 |
default_factory=lambda: settings.num_resamples_for_global_metrics
|
| 337 |
)
|
|
|
|
|
|
|
| 338 |
process_single_instances = True
|
| 339 |
|
| 340 |
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
|
|
@@ -385,6 +466,7 @@ class GlobalMetric(SingleStreamOperator, MetricWithConfidenceInterval):
|
|
| 385 |
instance_score[self.main_score] = no_score_value
|
| 386 |
|
| 387 |
instance["score"]["instance"].update(instance_score)
|
|
|
|
| 388 |
|
| 389 |
result = self._compute(references, predictions, task_data)
|
| 390 |
|
|
@@ -459,7 +541,7 @@ class BulkInstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
|
|
| 459 |
instance["task_data"] if "task_data" in instance else {}
|
| 460 |
for instance in stream
|
| 461 |
]
|
| 462 |
-
|
| 463 |
# compute the metric over all refs and preds
|
| 464 |
instance_scores = self.compute(
|
| 465 |
references=references,
|
|
@@ -724,6 +806,8 @@ class InstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
|
|
| 724 |
|
| 725 |
for instance in stream:
|
| 726 |
refs, pred = instance["references"], instance["prediction"]
|
|
|
|
|
|
|
| 727 |
task_data = instance["task_data"] if "task_data" in instance else {}
|
| 728 |
|
| 729 |
instance_score = self.compute(
|
|
@@ -837,42 +921,13 @@ class InstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
|
|
| 837 |
pass
|
| 838 |
|
| 839 |
|
| 840 |
-
class Squad(GlobalMetric):
|
| 841 |
-
_metric = None
|
| 842 |
-
main_score = "f1"
|
| 843 |
-
metric = "squad"
|
| 844 |
-
|
| 845 |
-
def prepare(self):
|
| 846 |
-
super().prepare()
|
| 847 |
-
self._metric = evaluate.load(self.metric)
|
| 848 |
-
|
| 849 |
-
def compute(
|
| 850 |
-
self,
|
| 851 |
-
references: List[List[str]],
|
| 852 |
-
predictions: List[str],
|
| 853 |
-
task_data: List[Dict],
|
| 854 |
-
) -> dict:
|
| 855 |
-
ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
|
| 856 |
-
formatted_predictions = [
|
| 857 |
-
{"prediction_text": prediction, "id": ids[i]}
|
| 858 |
-
for i, prediction in enumerate(predictions)
|
| 859 |
-
]
|
| 860 |
-
formatted_references = [
|
| 861 |
-
{"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
|
| 862 |
-
for i, reference in enumerate(references)
|
| 863 |
-
]
|
| 864 |
-
|
| 865 |
-
return self._metric.compute(
|
| 866 |
-
predictions=formatted_predictions,
|
| 867 |
-
references=formatted_references,
|
| 868 |
-
)
|
| 869 |
-
|
| 870 |
-
|
| 871 |
class Accuracy(InstanceMetric):
|
| 872 |
reduction_map = {"mean": ["accuracy"]}
|
| 873 |
main_score = "accuracy"
|
| 874 |
ci_scores = ["accuracy"]
|
| 875 |
|
|
|
|
|
|
|
| 876 |
def compute(
|
| 877 |
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
| 878 |
) -> dict:
|
|
@@ -886,11 +941,28 @@ class Accuracy(InstanceMetric):
|
|
| 886 |
return result
|
| 887 |
|
| 888 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 889 |
class StringContainment(InstanceMetric):
|
| 890 |
reduction_map = {"mean": ["string_containment"]}
|
| 891 |
main_score = "string_containment"
|
| 892 |
ci_scores = ["string_containment"]
|
| 893 |
|
|
|
|
|
|
|
|
|
|
| 894 |
def compute(
|
| 895 |
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
| 896 |
) -> dict:
|
|
@@ -1005,7 +1077,7 @@ class HuggingfaceMetric(GlobalMetric):
|
|
| 1005 |
|
| 1006 |
passed_task_data[additional_input_field] = next(iter(values))
|
| 1007 |
|
| 1008 |
-
# add check that all required fields in self.metrics are in passed_task_data
|
| 1009 |
result = self.metric.compute(
|
| 1010 |
predictions=predictions,
|
| 1011 |
references=references,
|
|
@@ -1087,6 +1159,9 @@ class F1(GlobalMetric):
|
|
| 1087 |
average = None # Report per class then aggregate by mean
|
| 1088 |
metric = "f1"
|
| 1089 |
|
|
|
|
|
|
|
|
|
|
| 1090 |
def prepare(self):
|
| 1091 |
super().prepare()
|
| 1092 |
self._metric = evaluate.load(self.metric)
|
|
@@ -1098,23 +1173,12 @@ class F1(GlobalMetric):
|
|
| 1098 |
self.id_to_str[id] = str
|
| 1099 |
return self.str_to_id[str]
|
| 1100 |
|
| 1101 |
-
def _labels_match_average_format(
|
| 1102 |
-
self, references: List[List[str]], predictions: List[str]
|
| 1103 |
-
):
|
| 1104 |
-
return True
|
| 1105 |
-
|
| 1106 |
def compute(
|
| 1107 |
self,
|
| 1108 |
references: List[List[str]],
|
| 1109 |
predictions: List[str],
|
| 1110 |
task_data: List[Dict],
|
| 1111 |
) -> dict:
|
| 1112 |
-
assert all(
|
| 1113 |
-
len(reference) == 1 for reference in references
|
| 1114 |
-
), "Only a single reference per prediction is allowed in F1 metric"
|
| 1115 |
-
if not self._labels_match_average_format(references, predictions):
|
| 1116 |
-
return {self.main_score: np.nan}
|
| 1117 |
-
|
| 1118 |
self.str_to_id = {}
|
| 1119 |
self.id_to_str = {}
|
| 1120 |
formatted_references = [
|
|
@@ -1149,27 +1213,29 @@ class F1Micro(F1):
|
|
| 1149 |
|
| 1150 |
|
| 1151 |
class F1Binary(F1):
|
|
|
|
|
|
|
| 1152 |
process_single_instances = False
|
| 1153 |
main_score = "f1_binary"
|
| 1154 |
average = "binary"
|
| 1155 |
pos_classes = {"1", "1.0", "yes", "true"}
|
|
|
|
| 1156 |
|
| 1157 |
def get_str_id(self, str):
|
| 1158 |
-
|
| 1159 |
-
return 1
|
| 1160 |
-
return 0
|
| 1161 |
|
| 1162 |
-
|
| 1163 |
-
|
| 1164 |
-
|
| 1165 |
-
|
| 1166 |
-
|
| 1167 |
-
|
| 1168 |
-
|
| 1169 |
-
|
| 1170 |
-
|
| 1171 |
-
|
| 1172 |
-
|
|
|
|
| 1173 |
|
| 1174 |
|
| 1175 |
class RecallBinary(F1Binary):
|
|
@@ -1197,6 +1263,9 @@ class F1MultiLabel(GlobalMetric):
|
|
| 1197 |
average = None # Report per class then aggregate by mean
|
| 1198 |
metric = "f1"
|
| 1199 |
|
|
|
|
|
|
|
|
|
|
| 1200 |
def prepare(self):
|
| 1201 |
super().prepare()
|
| 1202 |
self._metric = evaluate.load(self.metric, "multilabel")
|
|
@@ -1224,7 +1293,6 @@ class F1MultiLabel(GlobalMetric):
|
|
| 1224 |
self.str_to_id = {}
|
| 1225 |
self.id_to_str = {}
|
| 1226 |
|
| 1227 |
-
self._validate_references_and_prediction(references, predictions)
|
| 1228 |
references = [reference[0] for reference in references]
|
| 1229 |
|
| 1230 |
labels = list({label for reference in references for label in reference})
|
|
@@ -1267,23 +1335,6 @@ class F1MultiLabel(GlobalMetric):
|
|
| 1267 |
final_result = {self.main_score: result[self.metric]}
|
| 1268 |
return final_result
|
| 1269 |
|
| 1270 |
-
def _validate_references_and_prediction(self, references, predictions):
|
| 1271 |
-
for reference in references:
|
| 1272 |
-
if not len(reference) == 1:
|
| 1273 |
-
raise ValueError(
|
| 1274 |
-
f"Only a single reference per prediction is allowed in F1 multi label metric. Received reference: {reference}"
|
| 1275 |
-
)
|
| 1276 |
-
if not isoftype(reference[0], List[str]):
|
| 1277 |
-
raise ValueError(
|
| 1278 |
-
f"Each reference is expected to be a list of strings in F1 multi label metric. Received reference: '{reference[0]}'"
|
| 1279 |
-
)
|
| 1280 |
-
|
| 1281 |
-
for prediction in predictions:
|
| 1282 |
-
if not isoftype(prediction, List[str]):
|
| 1283 |
-
raise ValueError(
|
| 1284 |
-
f"Each prediction is expected to be a list of strings in F1 multi label metric. Received prediction: '{prediction}'"
|
| 1285 |
-
)
|
| 1286 |
-
|
| 1287 |
|
| 1288 |
class PrecisionMacroMultiLabel(F1MultiLabel):
|
| 1289 |
main_score = "precision_macro"
|
|
@@ -1324,6 +1375,9 @@ class Rouge(HuggingfaceMetric):
|
|
| 1324 |
main_score = "rougeL"
|
| 1325 |
scale = 1.0
|
| 1326 |
|
|
|
|
|
|
|
|
|
|
| 1327 |
use_aggregator: bool = True
|
| 1328 |
rouge_types: List[str] = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
|
| 1329 |
|
|
@@ -1361,6 +1415,8 @@ class CharEditDistanceAccuracy(InstanceMetric):
|
|
| 1361 |
reduction_map = {"mean": ["char_edit_dist_accuracy"]}
|
| 1362 |
main_score = "char_edit_dist_accuracy"
|
| 1363 |
ci_scores = ["char_edit_dist_accuracy"]
|
|
|
|
|
|
|
| 1364 |
|
| 1365 |
_requirements_list: List[str] = ["editdistance"]
|
| 1366 |
|
|
@@ -1371,10 +1427,6 @@ class CharEditDistanceAccuracy(InstanceMetric):
|
|
| 1371 |
self.eval = editdistance.eval
|
| 1372 |
|
| 1373 |
def compute(self, references, prediction: str, task_data: List[Dict]) -> dict:
|
| 1374 |
-
assert (
|
| 1375 |
-
len(references) == 1
|
| 1376 |
-
), f"Expected only one reference , but received: {references}"
|
| 1377 |
-
|
| 1378 |
formatted_prediction = "".join(prediction.split())
|
| 1379 |
formatted_reference = "".join(references[0].split())
|
| 1380 |
max_length = max(len(formatted_reference), len(formatted_prediction))
|
|
@@ -1387,6 +1439,8 @@ class CharEditDistanceAccuracy(InstanceMetric):
|
|
| 1387 |
class Wer(HuggingfaceMetric):
|
| 1388 |
hf_metric_name = "wer"
|
| 1389 |
main_score = "wer"
|
|
|
|
|
|
|
| 1390 |
|
| 1391 |
_requirements_list: List[str] = ["jiwer"]
|
| 1392 |
|
|
@@ -1396,9 +1450,6 @@ class Wer(HuggingfaceMetric):
|
|
| 1396 |
predictions: List[str],
|
| 1397 |
task_data: List[Dict],
|
| 1398 |
) -> dict:
|
| 1399 |
-
assert all(
|
| 1400 |
-
len(reference) == 1 for reference in references
|
| 1401 |
-
), "Only single reference per prediction is allowed in wer metric"
|
| 1402 |
formatted_references = [reference[0] for reference in references]
|
| 1403 |
result = self.metric.compute(
|
| 1404 |
predictions=predictions, references=formatted_references
|
|
@@ -1410,12 +1461,21 @@ class Spearmanr(HuggingfaceMetric):
|
|
| 1410 |
hf_metric_name = "spearmanr"
|
| 1411 |
main_score = "spearmanr"
|
| 1412 |
process_single_instances = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1413 |
|
| 1414 |
|
| 1415 |
class KendallTauMetric(GlobalMetric):
|
| 1416 |
main_score = "kendalltau_b"
|
| 1417 |
variant = "b"
|
| 1418 |
process_single_instances = False
|
|
|
|
| 1419 |
|
| 1420 |
_requirements_list: List[str] = ["scipy"]
|
| 1421 |
|
|
@@ -1448,6 +1508,9 @@ class MatthewsCorrelation(HuggingfaceMetric):
|
|
| 1448 |
main_score = "matthews_correlation"
|
| 1449 |
str_to_id: dict = InternalField(default_factory=dict)
|
| 1450 |
|
|
|
|
|
|
|
|
|
|
| 1451 |
def get_str_id(self, str):
|
| 1452 |
if str not in self.str_to_id:
|
| 1453 |
id = len(self.str_to_id)
|
|
@@ -1475,6 +1538,8 @@ class RocAuc(GlobalMetric):
|
|
| 1475 |
main_score = "roc_auc"
|
| 1476 |
process_single_instances = False
|
| 1477 |
_requirements_list: List[str] = ["sklearn"]
|
|
|
|
|
|
|
| 1478 |
|
| 1479 |
def prepare(self):
|
| 1480 |
from sklearn import metrics
|
|
@@ -1502,6 +1567,8 @@ class RocAuc(GlobalMetric):
|
|
| 1502 |
|
| 1503 |
class CustomF1(GlobalMetric):
|
| 1504 |
main_score = "f1_micro"
|
|
|
|
|
|
|
| 1505 |
groups = None
|
| 1506 |
zero_division = 0.0
|
| 1507 |
|
|
@@ -1556,6 +1623,8 @@ class CustomF1(GlobalMetric):
|
|
| 1556 |
def get_groups(self, elements, task_data):
|
| 1557 |
groups = set()
|
| 1558 |
for sublist, additional_input in zip(elements, task_data):
|
|
|
|
|
|
|
| 1559 |
for e in sublist:
|
| 1560 |
if self.should_ignore_element(e, additional_input):
|
| 1561 |
continue
|
|
@@ -1568,18 +1637,7 @@ class CustomF1(GlobalMetric):
|
|
| 1568 |
predictions: List[Any],
|
| 1569 |
task_data: List[Dict],
|
| 1570 |
) -> dict:
|
| 1571 |
-
|
| 1572 |
-
if (
|
| 1573 |
-
isinstance(references[0], list)
|
| 1574 |
-
and len(references[0]) > 0
|
| 1575 |
-
and isinstance(references[0][0], list)
|
| 1576 |
-
):
|
| 1577 |
-
references = [element[0] for element in references]
|
| 1578 |
-
|
| 1579 |
-
assert len(references) == len(predictions), (
|
| 1580 |
-
f"references size ({len(references)})"
|
| 1581 |
-
f" doesn't mach predictions size ({len(references)})."
|
| 1582 |
-
)
|
| 1583 |
|
| 1584 |
if self.groups is None:
|
| 1585 |
groups = self.get_groups(references, task_data)
|
|
@@ -1672,6 +1730,8 @@ class CustomF1(GlobalMetric):
|
|
| 1672 |
|
| 1673 |
|
| 1674 |
class NER(CustomF1):
|
|
|
|
|
|
|
| 1675 |
def get_element_group(self, element, additional_input):
|
| 1676 |
return element[1]
|
| 1677 |
|
|
@@ -1702,6 +1762,8 @@ class TokenOverlap(InstanceMetric):
|
|
| 1702 |
reduction_map = {"mean": ["f1", "precision", "recall"]}
|
| 1703 |
main_score = "f1"
|
| 1704 |
ci_scores = ["f1", "precision", "recall"]
|
|
|
|
|
|
|
| 1705 |
|
| 1706 |
def compute(
|
| 1707 |
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
|
@@ -1836,25 +1898,11 @@ class Reward(BulkInstanceMetric):
|
|
| 1836 |
|
| 1837 |
|
| 1838 |
class LlamaIndexCorrectness(InstanceMetric):
|
| 1839 |
-
"""LlamaIndex based metric class for evaluating correctness.
|
| 1840 |
-
|
| 1841 |
-
Attributes:
|
| 1842 |
-
reduction_map (dict): A dictionary specifying the reduction method for the metric.
|
| 1843 |
-
main_score (str): The main score used for evaluation.
|
| 1844 |
-
_requirements_list (List[str]): A list specifying any additional requirements for the metric.
|
| 1845 |
-
|
| 1846 |
-
Methods:
|
| 1847 |
-
prepare(self): Initialization method for the metric.
|
| 1848 |
-
compute(self, references, predictions, additional_inputs): Method to compute the metric.
|
| 1849 |
-
|
| 1850 |
-
Usage:
|
| 1851 |
-
metric = LlamaIndexCorrectnessMetric()
|
| 1852 |
-
scores = metric.compute(references, prediction, additional_inputs)
|
| 1853 |
-
"""
|
| 1854 |
|
| 1855 |
model_name: str = ""
|
| 1856 |
main_score: str = ""
|
| 1857 |
-
|
| 1858 |
reduction_map: Dict[str, List[str]] = None
|
| 1859 |
openai_models: List[str] = ["gpt-3.5-turbo"]
|
| 1860 |
anthropic_models: List[
|
|
@@ -1875,9 +1923,16 @@ class LlamaIndexCorrectness(InstanceMetric):
|
|
| 1875 |
Returns:
|
| 1876 |
Tuple[float, str]: A tuple containing the score as a float and the reasoning as a string.
|
| 1877 |
"""
|
| 1878 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1879 |
reasoning_str = "\n".join(eval_response.split("\n")[1:])
|
| 1880 |
-
score = float(score_str)
|
| 1881 |
reasoning = reasoning_str.lstrip("\n")
|
| 1882 |
return score, reasoning
|
| 1883 |
|
|
@@ -1942,7 +1997,10 @@ class LlamaIndexCorrectness(InstanceMetric):
|
|
| 1942 |
), f"Cannot run send data to remote APIs ({self.model_name}) when unitxt.settings.allow_passing_data_to_remote_api=False. Set UNITXT_ALLOW_PASSING_DATA_TO_REMOTE_API environment variable, if you want to allow this."
|
| 1943 |
|
| 1944 |
query = task_data["question"]
|
| 1945 |
-
|
|
|
|
|
|
|
|
|
|
| 1946 |
|
| 1947 |
per_reference_results = []
|
| 1948 |
for reference_response in references:
|
|
@@ -1968,9 +2026,9 @@ class Perplexity(BulkInstanceMetric):
|
|
| 1968 |
|
| 1969 |
main_score = "perplexity"
|
| 1970 |
reduction_map = {"mean": ["perplexity"]}
|
|
|
|
| 1971 |
|
| 1972 |
perplexity_prompt: str
|
| 1973 |
-
|
| 1974 |
batch_size: int = 32
|
| 1975 |
model_name: str
|
| 1976 |
|
|
@@ -2193,6 +2251,22 @@ class Perplexity(BulkInstanceMetric):
|
|
| 2193 |
return shifted_logits, shifted_labels
|
| 2194 |
|
| 2195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2196 |
class NDCG(GlobalMetric):
|
| 2197 |
"""Normalized Discounted Cumulative Gain: measures the quality of ranking with respect to ground truth ranking scores.
|
| 2198 |
|
|
@@ -2211,6 +2285,8 @@ class NDCG(GlobalMetric):
|
|
| 2211 |
main_score = "nDCG"
|
| 2212 |
|
| 2213 |
_requirements_list: List[str] = ["sklearn"]
|
|
|
|
|
|
|
| 2214 |
|
| 2215 |
def prepare(self):
|
| 2216 |
from sklearn.metrics import ndcg_score
|
|
@@ -2227,6 +2303,7 @@ class NDCG(GlobalMetric):
|
|
| 2227 |
from collections import defaultdict
|
| 2228 |
|
| 2229 |
query_to_predictions_and_references = defaultdict(lambda: [[], []])
|
|
|
|
| 2230 |
for reference, pred, inputs_dict in zip(references, predictions, task_data):
|
| 2231 |
query = inputs_dict.get("query")
|
| 2232 |
query_to_predictions_and_references[query][0].append(pred)
|
|
@@ -2257,10 +2334,13 @@ class NDCG(GlobalMetric):
|
|
| 2257 |
|
| 2258 |
|
| 2259 |
class RetrievalMetric(InstanceMetric):
|
|
|
|
|
|
|
|
|
|
| 2260 |
def compute(self, references: List[Any], prediction: Any, task_data: Dict) -> dict:
|
| 2261 |
# digest input
|
| 2262 |
pred_ids: List[Any] = prediction
|
| 2263 |
-
ref_ids: List[Any] = list(dict.fromkeys(references))
|
| 2264 |
|
| 2265 |
# relevance_at_k: 1-based dictionary of indicators (0/1), telling whether
|
| 2266 |
# the doc id retrieved at position k (assuming it is 1-based, so k starts
|
|
@@ -2408,6 +2488,9 @@ class RetrievalAtK(RetrievalMetric):
|
|
| 2408 |
|
| 2409 |
|
| 2410 |
class KPA(CustomF1):
|
|
|
|
|
|
|
|
|
|
| 2411 |
def get_element_group(self, element, additional_input):
|
| 2412 |
return additional_input["keypoint"]
|
| 2413 |
|
|
@@ -3088,7 +3171,11 @@ class FixedGroupAbsvalNormHedgesGParaphraseStringContainment(StringContainment):
|
|
| 3088 |
|
| 3089 |
|
| 3090 |
class BinaryMaxF1(F1Binary):
|
|
|
|
|
|
|
| 3091 |
main_score = "max_f1_binary"
|
|
|
|
|
|
|
| 3092 |
|
| 3093 |
def compute(
|
| 3094 |
self,
|
|
@@ -3096,34 +3183,13 @@ class BinaryMaxF1(F1Binary):
|
|
| 3096 |
predictions: List[List[str]],
|
| 3097 |
task_data: List[Dict],
|
| 3098 |
) -> dict:
|
| 3099 |
-
|
| 3100 |
-
len(reference) == 1 for reference in references
|
| 3101 |
-
), "Only a single reference per prediction is allowed in F1 metric"
|
| 3102 |
-
classes = set(itertools.chain(*references))
|
| 3103 |
-
n_clases = len(classes)
|
| 3104 |
-
assert len(classes) <= 2, "References of BinaryMaxF1 must be binary"
|
| 3105 |
-
pos_classes = classes.intersection(self.pos_classes)
|
| 3106 |
-
neg_classes = classes.difference(self.pos_classes)
|
| 3107 |
-
n_pos_classes = len(pos_classes)
|
| 3108 |
-
if n_clases == 2:
|
| 3109 |
-
assert (
|
| 3110 |
-
n_pos_classes == 1
|
| 3111 |
-
), "Only one positive class is allowed in BinaryMaxF1"
|
| 3112 |
-
pos_class = next(iter(pos_classes)) if n_pos_classes > 0 else "1.0"
|
| 3113 |
-
neg_class = next(iter(neg_classes)) if len(neg_classes) > 0 else "0.0"
|
| 3114 |
-
|
| 3115 |
-
float_predictions = []
|
| 3116 |
-
for prediction in predictions:
|
| 3117 |
-
try:
|
| 3118 |
-
float_predictions.append(float(prediction))
|
| 3119 |
-
except Exception:
|
| 3120 |
-
float_predictions.append(0)
|
| 3121 |
|
| 3122 |
best_thr = -1
|
| 3123 |
best_f1 = -1
|
| 3124 |
for thr in set(float_predictions):
|
| 3125 |
new_predictions = [
|
| 3126 |
-
|
| 3127 |
for float_prediction in float_predictions
|
| 3128 |
]
|
| 3129 |
f1 = super().compute(references, new_predictions, task_data)[
|
|
@@ -3134,3 +3200,69 @@ class BinaryMaxF1(F1Binary):
|
|
| 3134 |
best_thr = thr
|
| 3135 |
|
| 3136 |
return {self.main_score: best_f1, "best_thr_maxf1": best_thr}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import re
|
| 2 |
import string
|
| 3 |
import uuid
|
|
|
|
| 29 |
from .random_utils import get_seed
|
| 30 |
from .settings_utils import get_settings
|
| 31 |
from .stream import MultiStream, Stream
|
| 32 |
+
from .type_utils import isoftype, parse_type_string, to_float_or_default
|
| 33 |
|
| 34 |
logger = get_logger()
|
| 35 |
settings = get_settings()
|
|
|
|
| 74 |
def main_score(self):
|
| 75 |
pass
|
| 76 |
|
| 77 |
+
# Override 'prediction_type' with the expected type of predictions
|
| 78 |
+
# and references. Example: "List[str]", "List[Dict]"", "string".
|
| 79 |
+
# If left with default None, a warning will be displayed.
|
| 80 |
+
# In future versions of unitxt, this will be an error.
|
| 81 |
+
prediction_type: str = None
|
| 82 |
+
|
| 83 |
+
# Standard metrics can receive multiple references per predictions (in a list)
|
| 84 |
+
# Some metrics support only a single reference per prediction (one element in the list)
|
| 85 |
+
single_reference_per_prediction: bool = False
|
| 86 |
+
|
| 87 |
+
# Used to store the parsed prediction type and avoid
|
| 88 |
+
# parsing on every use
|
| 89 |
+
_parsed_prediction_type = None
|
| 90 |
+
|
| 91 |
+
def _validate_references_and_prediction(self, references, predictions):
|
| 92 |
+
if not isoftype(predictions, List[Any]):
|
| 93 |
+
raise ValueError(
|
| 94 |
+
f"Metric {self.get_metric_name()} should receive a list of predictions {self.get_metric_name()}. Received predictions of type {type(predictions)}: {predictions}"
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
if not isoftype(references, List[Any]):
|
| 98 |
+
raise ValueError(
|
| 99 |
+
f"Metric {self.get_metric_name()} should receive a list of predictions. Received references of type {type(references)}: {references}"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
if len(references) != len(predictions):
|
| 103 |
+
raise ValueError(
|
| 104 |
+
f"references size ({len(references)})"
|
| 105 |
+
f" doesn't mach predictions size ({len(references)})."
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
for reference in references:
|
| 109 |
+
self._validate_reference(reference)
|
| 110 |
+
|
| 111 |
+
for prediction in predictions:
|
| 112 |
+
self._validate_prediction(prediction)
|
| 113 |
+
|
| 114 |
+
def _validate_prediction(self, prediction):
|
| 115 |
+
if not isoftype(prediction, self.get_prediction_type()):
|
| 116 |
+
raise ValueError(
|
| 117 |
+
f"Each prediction is expected to be of type '{self.prediction_type}' in {self.get_metric_name()} metric. Received prediction of type {type(prediction)}: {prediction}"
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
def _validate_reference(self, reference):
|
| 121 |
+
if not isoftype(reference, List[Any]):
|
| 122 |
+
raise ValueError(
|
| 123 |
+
f"Expecting a list of references for each prediction in {self.get_metric_name()} metric. Received reference of type {type(reference)}: {reference}"
|
| 124 |
+
)
|
| 125 |
+
if self.single_reference_per_prediction and not len(reference) == 1:
|
| 126 |
+
raise ValueError(
|
| 127 |
+
f"Expecting a list with a single reference per prediction in {self.get_metric_name()} metric. Received a list with multiple references: {reference}"
|
| 128 |
+
)
|
| 129 |
+
for ref in reference:
|
| 130 |
+
if not isoftype(ref, self.get_prediction_type()):
|
| 131 |
+
raise ValueError(
|
| 132 |
+
f"Each reference is expected to be of type '{self.prediction_type}' in {self.get_metric_name()} metric. Received reference of type {type(ref)}: {ref}"
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
def get_prediction_type(self):
|
| 136 |
+
if self.prediction_type is None:
|
| 137 |
+
logger.warning(
|
| 138 |
+
f"{self.get_metric_name()} metric does not set the 'prediction_type' parameter so input type checking is not performed. Set the prediction type to the expected prediction type (e.g. 'str', 'List[str]', or 'Any'). In future version of unitxt this will raise an exception."
|
| 139 |
+
)
|
| 140 |
+
self._parsed_prediction_type = Any
|
| 141 |
+
try:
|
| 142 |
+
if self._parsed_prediction_type is not None:
|
| 143 |
+
return self._parsed_prediction_type
|
| 144 |
+
|
| 145 |
+
self._parsed_prediction_type = parse_type_string(self.prediction_type)
|
| 146 |
+
except ValueError:
|
| 147 |
+
raise ValueError(
|
| 148 |
+
"Could convert prediction type '{self.prediction_type}' in {self.get_metric_name()} to known type. To enable type checking for this prediction type, open unitxt issue with this message. Alternatively, set the metric's prediction_type to 'Any'"
|
| 149 |
+
) from None
|
| 150 |
+
return self._parsed_prediction_type
|
| 151 |
+
|
| 152 |
+
def get_metric_name(self):
|
| 153 |
+
if self.artifact_identifier is not None:
|
| 154 |
+
return self.artifact_identifier
|
| 155 |
+
return self.__class__.__name__
|
| 156 |
+
|
| 157 |
def consume_stream(self, stream: Stream):
|
| 158 |
references = []
|
| 159 |
predictions = []
|
|
|
|
| 414 |
n_resamples: int = OptionalField(
|
| 415 |
default_factory=lambda: settings.num_resamples_for_global_metrics
|
| 416 |
)
|
| 417 |
+
|
| 418 |
+
# calculate scores for single instances
|
| 419 |
process_single_instances = True
|
| 420 |
|
| 421 |
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
|
|
|
|
| 466 |
instance_score[self.main_score] = no_score_value
|
| 467 |
|
| 468 |
instance["score"]["instance"].update(instance_score)
|
| 469 |
+
self._validate_references_and_prediction(references, predictions)
|
| 470 |
|
| 471 |
result = self._compute(references, predictions, task_data)
|
| 472 |
|
|
|
|
| 541 |
instance["task_data"] if "task_data" in instance else {}
|
| 542 |
for instance in stream
|
| 543 |
]
|
| 544 |
+
self._validate_references_and_prediction(references, predictions)
|
| 545 |
# compute the metric over all refs and preds
|
| 546 |
instance_scores = self.compute(
|
| 547 |
references=references,
|
|
|
|
| 806 |
|
| 807 |
for instance in stream:
|
| 808 |
refs, pred = instance["references"], instance["prediction"]
|
| 809 |
+
self._validate_prediction(pred)
|
| 810 |
+
self._validate_reference(refs)
|
| 811 |
task_data = instance["task_data"] if "task_data" in instance else {}
|
| 812 |
|
| 813 |
instance_score = self.compute(
|
|
|
|
| 921 |
pass
|
| 922 |
|
| 923 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 924 |
class Accuracy(InstanceMetric):
|
| 925 |
reduction_map = {"mean": ["accuracy"]}
|
| 926 |
main_score = "accuracy"
|
| 927 |
ci_scores = ["accuracy"]
|
| 928 |
|
| 929 |
+
prediction_type = "Any" # string representation is compared
|
| 930 |
+
|
| 931 |
def compute(
|
| 932 |
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
| 933 |
) -> dict:
|
|
|
|
| 941 |
return result
|
| 942 |
|
| 943 |
|
| 944 |
+
class UnsortedListExactMatch(InstanceMetric):
|
| 945 |
+
reduction_map = {"mean": ["unsorted_list_exact_match"]}
|
| 946 |
+
main_score = "unsorted_list_exact_match"
|
| 947 |
+
ci_scores = ["unsorted_list_exact_match"]
|
| 948 |
+
|
| 949 |
+
def compute(
|
| 950 |
+
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
| 951 |
+
) -> dict:
|
| 952 |
+
result = {self.main_score: float(sorted(prediction) == sorted(references[0]))}
|
| 953 |
+
result["score"] = result[self.main_score]
|
| 954 |
+
result["score_name"] = self.main_score
|
| 955 |
+
return result
|
| 956 |
+
|
| 957 |
+
|
| 958 |
class StringContainment(InstanceMetric):
|
| 959 |
reduction_map = {"mean": ["string_containment"]}
|
| 960 |
main_score = "string_containment"
|
| 961 |
ci_scores = ["string_containment"]
|
| 962 |
|
| 963 |
+
prediction_type = "Any" # string representation is compared
|
| 964 |
+
single_reference_per_prediction = False # multiple references allowed
|
| 965 |
+
|
| 966 |
def compute(
|
| 967 |
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
| 968 |
) -> dict:
|
|
|
|
| 1077 |
|
| 1078 |
passed_task_data[additional_input_field] = next(iter(values))
|
| 1079 |
|
| 1080 |
+
# add check that all required fields in self.metrics are in passed_task_data
|
| 1081 |
result = self.metric.compute(
|
| 1082 |
predictions=predictions,
|
| 1083 |
references=references,
|
|
|
|
| 1159 |
average = None # Report per class then aggregate by mean
|
| 1160 |
metric = "f1"
|
| 1161 |
|
| 1162 |
+
prediction_type = "str"
|
| 1163 |
+
single_reference_per_prediction = True
|
| 1164 |
+
|
| 1165 |
def prepare(self):
|
| 1166 |
super().prepare()
|
| 1167 |
self._metric = evaluate.load(self.metric)
|
|
|
|
| 1173 |
self.id_to_str[id] = str
|
| 1174 |
return self.str_to_id[str]
|
| 1175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1176 |
def compute(
|
| 1177 |
self,
|
| 1178 |
references: List[List[str]],
|
| 1179 |
predictions: List[str],
|
| 1180 |
task_data: List[Dict],
|
| 1181 |
) -> dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1182 |
self.str_to_id = {}
|
| 1183 |
self.id_to_str = {}
|
| 1184 |
formatted_references = [
|
|
|
|
| 1213 |
|
| 1214 |
|
| 1215 |
class F1Binary(F1):
|
| 1216 |
+
"""Calculate f1 for a binary task, using 0.5 as the threshold in the case of float predictions."""
|
| 1217 |
+
|
| 1218 |
process_single_instances = False
|
| 1219 |
main_score = "f1_binary"
|
| 1220 |
average = "binary"
|
| 1221 |
pos_classes = {"1", "1.0", "yes", "true"}
|
| 1222 |
+
threshold = 0.5
|
| 1223 |
|
| 1224 |
def get_str_id(self, str):
|
| 1225 |
+
return int(str)
|
|
|
|
|
|
|
| 1226 |
|
| 1227 |
+
def compute(
|
| 1228 |
+
self,
|
| 1229 |
+
references: List[List[str]],
|
| 1230 |
+
predictions: List[str],
|
| 1231 |
+
task_data: List[Dict],
|
| 1232 |
+
) -> dict:
|
| 1233 |
+
predictions_floats = [to_float_or_default(p) for p in predictions]
|
| 1234 |
+
predictions = [str(int(p > self.threshold)) for p in predictions_floats]
|
| 1235 |
+
references = [
|
| 1236 |
+
["1"] if r[0].lower() in self.pos_classes else ["0"] for r in references
|
| 1237 |
+
]
|
| 1238 |
+
return super().compute(references, predictions, task_data)
|
| 1239 |
|
| 1240 |
|
| 1241 |
class RecallBinary(F1Binary):
|
|
|
|
| 1263 |
average = None # Report per class then aggregate by mean
|
| 1264 |
metric = "f1"
|
| 1265 |
|
| 1266 |
+
prediction_type = "List[str]"
|
| 1267 |
+
single_reference_per_prediction = True
|
| 1268 |
+
|
| 1269 |
def prepare(self):
|
| 1270 |
super().prepare()
|
| 1271 |
self._metric = evaluate.load(self.metric, "multilabel")
|
|
|
|
| 1293 |
self.str_to_id = {}
|
| 1294 |
self.id_to_str = {}
|
| 1295 |
|
|
|
|
| 1296 |
references = [reference[0] for reference in references]
|
| 1297 |
|
| 1298 |
labels = list({label for reference in references for label in reference})
|
|
|
|
| 1335 |
final_result = {self.main_score: result[self.metric]}
|
| 1336 |
return final_result
|
| 1337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1338 |
|
| 1339 |
class PrecisionMacroMultiLabel(F1MultiLabel):
|
| 1340 |
main_score = "precision_macro"
|
|
|
|
| 1375 |
main_score = "rougeL"
|
| 1376 |
scale = 1.0
|
| 1377 |
|
| 1378 |
+
prediction_type = "str"
|
| 1379 |
+
single_reference_per_prediction = False # multiple references allowed
|
| 1380 |
+
|
| 1381 |
use_aggregator: bool = True
|
| 1382 |
rouge_types: List[str] = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
|
| 1383 |
|
|
|
|
| 1415 |
reduction_map = {"mean": ["char_edit_dist_accuracy"]}
|
| 1416 |
main_score = "char_edit_dist_accuracy"
|
| 1417 |
ci_scores = ["char_edit_dist_accuracy"]
|
| 1418 |
+
prediction_type = "str"
|
| 1419 |
+
single_reference_per_prediction = True
|
| 1420 |
|
| 1421 |
_requirements_list: List[str] = ["editdistance"]
|
| 1422 |
|
|
|
|
| 1427 |
self.eval = editdistance.eval
|
| 1428 |
|
| 1429 |
def compute(self, references, prediction: str, task_data: List[Dict]) -> dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1430 |
formatted_prediction = "".join(prediction.split())
|
| 1431 |
formatted_reference = "".join(references[0].split())
|
| 1432 |
max_length = max(len(formatted_reference), len(formatted_prediction))
|
|
|
|
| 1439 |
class Wer(HuggingfaceMetric):
|
| 1440 |
hf_metric_name = "wer"
|
| 1441 |
main_score = "wer"
|
| 1442 |
+
prediction_type = "str"
|
| 1443 |
+
single_reference_per_prediction = True
|
| 1444 |
|
| 1445 |
_requirements_list: List[str] = ["jiwer"]
|
| 1446 |
|
|
|
|
| 1450 |
predictions: List[str],
|
| 1451 |
task_data: List[Dict],
|
| 1452 |
) -> dict:
|
|
|
|
|
|
|
|
|
|
| 1453 |
formatted_references = [reference[0] for reference in references]
|
| 1454 |
result = self.metric.compute(
|
| 1455 |
predictions=predictions, references=formatted_references
|
|
|
|
| 1461 |
hf_metric_name = "spearmanr"
|
| 1462 |
main_score = "spearmanr"
|
| 1463 |
process_single_instances = False
|
| 1464 |
+
prediction_type = "float"
|
| 1465 |
+
|
| 1466 |
+
# Spearmanr references are not list
|
| 1467 |
+
def _validate_reference(self, reference):
|
| 1468 |
+
if not isoftype(reference, self.get_prediction_type()):
|
| 1469 |
+
raise ValueError(
|
| 1470 |
+
f"Each reference is expected to be of type '{self.prediction_type}' in {self.get_metric_name()} metric. Received prediction of type {type(reference)}: {reference}"
|
| 1471 |
+
)
|
| 1472 |
|
| 1473 |
|
| 1474 |
class KendallTauMetric(GlobalMetric):
|
| 1475 |
main_score = "kendalltau_b"
|
| 1476 |
variant = "b"
|
| 1477 |
process_single_instances = False
|
| 1478 |
+
prediction_type = "str"
|
| 1479 |
|
| 1480 |
_requirements_list: List[str] = ["scipy"]
|
| 1481 |
|
|
|
|
| 1508 |
main_score = "matthews_correlation"
|
| 1509 |
str_to_id: dict = InternalField(default_factory=dict)
|
| 1510 |
|
| 1511 |
+
single_reference_per_prediction = True
|
| 1512 |
+
prediction_type = "str"
|
| 1513 |
+
|
| 1514 |
def get_str_id(self, str):
|
| 1515 |
if str not in self.str_to_id:
|
| 1516 |
id = len(self.str_to_id)
|
|
|
|
| 1538 |
main_score = "roc_auc"
|
| 1539 |
process_single_instances = False
|
| 1540 |
_requirements_list: List[str] = ["sklearn"]
|
| 1541 |
+
single_reference_per_prediction = True
|
| 1542 |
+
prediction_type = "str"
|
| 1543 |
|
| 1544 |
def prepare(self):
|
| 1545 |
from sklearn import metrics
|
|
|
|
| 1567 |
|
| 1568 |
class CustomF1(GlobalMetric):
|
| 1569 |
main_score = "f1_micro"
|
| 1570 |
+
prediction_type = "Any"
|
| 1571 |
+
single_reference_per_prediction = True
|
| 1572 |
groups = None
|
| 1573 |
zero_division = 0.0
|
| 1574 |
|
|
|
|
| 1623 |
def get_groups(self, elements, task_data):
|
| 1624 |
groups = set()
|
| 1625 |
for sublist, additional_input in zip(elements, task_data):
|
| 1626 |
+
if not isinstance(sublist, list):
|
| 1627 |
+
sublist = [sublist]
|
| 1628 |
for e in sublist:
|
| 1629 |
if self.should_ignore_element(e, additional_input):
|
| 1630 |
continue
|
|
|
|
| 1637 |
predictions: List[Any],
|
| 1638 |
task_data: List[Dict],
|
| 1639 |
) -> dict:
|
| 1640 |
+
references = [element[0] for element in references]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1641 |
|
| 1642 |
if self.groups is None:
|
| 1643 |
groups = self.get_groups(references, task_data)
|
|
|
|
| 1730 |
|
| 1731 |
|
| 1732 |
class NER(CustomF1):
|
| 1733 |
+
prediction_type = "List[Tuple[str,str]]"
|
| 1734 |
+
|
| 1735 |
def get_element_group(self, element, additional_input):
|
| 1736 |
return element[1]
|
| 1737 |
|
|
|
|
| 1762 |
reduction_map = {"mean": ["f1", "precision", "recall"]}
|
| 1763 |
main_score = "f1"
|
| 1764 |
ci_scores = ["f1", "precision", "recall"]
|
| 1765 |
+
single_reference_per_prediction = False
|
| 1766 |
+
prediction_type = "str"
|
| 1767 |
|
| 1768 |
def compute(
|
| 1769 |
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
|
|
|
| 1898 |
|
| 1899 |
|
| 1900 |
class LlamaIndexCorrectness(InstanceMetric):
|
| 1901 |
+
"""LlamaIndex based metric class for evaluating correctness."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1902 |
|
| 1903 |
model_name: str = ""
|
| 1904 |
main_score: str = ""
|
| 1905 |
+
prediction_type: str = "str"
|
| 1906 |
reduction_map: Dict[str, List[str]] = None
|
| 1907 |
openai_models: List[str] = ["gpt-3.5-turbo"]
|
| 1908 |
anthropic_models: List[
|
|
|
|
| 1923 |
Returns:
|
| 1924 |
Tuple[float, str]: A tuple containing the score as a float and the reasoning as a string.
|
| 1925 |
"""
|
| 1926 |
+
import re
|
| 1927 |
+
|
| 1928 |
+
match = re.search(r"\b\d+\.\d+\b|\b\d+\b", eval_response)
|
| 1929 |
+
|
| 1930 |
+
if match:
|
| 1931 |
+
score = float(match.group())
|
| 1932 |
+
else:
|
| 1933 |
+
raise Exception("could not parse judge response")
|
| 1934 |
+
|
| 1935 |
reasoning_str = "\n".join(eval_response.split("\n")[1:])
|
|
|
|
| 1936 |
reasoning = reasoning_str.lstrip("\n")
|
| 1937 |
return score, reasoning
|
| 1938 |
|
|
|
|
| 1997 |
), f"Cannot run send data to remote APIs ({self.model_name}) when unitxt.settings.allow_passing_data_to_remote_api=False. Set UNITXT_ALLOW_PASSING_DATA_TO_REMOTE_API environment variable, if you want to allow this."
|
| 1998 |
|
| 1999 |
query = task_data["question"]
|
| 2000 |
+
|
| 2001 |
+
contexts = None
|
| 2002 |
+
if "contexts" in task_data:
|
| 2003 |
+
contexts = task_data["contexts"]
|
| 2004 |
|
| 2005 |
per_reference_results = []
|
| 2006 |
for reference_response in references:
|
|
|
|
| 2026 |
|
| 2027 |
main_score = "perplexity"
|
| 2028 |
reduction_map = {"mean": ["perplexity"]}
|
| 2029 |
+
prediction_type = "str"
|
| 2030 |
|
| 2031 |
perplexity_prompt: str
|
|
|
|
| 2032 |
batch_size: int = 32
|
| 2033 |
model_name: str
|
| 2034 |
|
|
|
|
| 2251 |
return shifted_logits, shifted_labels
|
| 2252 |
|
| 2253 |
|
| 2254 |
+
class Squad(HuggingfaceMetric):
|
| 2255 |
+
hf_metric_name = "squad"
|
| 2256 |
+
main_score = "f1"
|
| 2257 |
+
scale = 100.0
|
| 2258 |
+
scaled_fields = ["f1", "exact_match"]
|
| 2259 |
+
prediction_type = "Dict[str,Any]"
|
| 2260 |
+
|
| 2261 |
+
# Squad references are not list, but a dict that contain a field called 'answers/text'
|
| 2262 |
+
# which is the list of references
|
| 2263 |
+
def _validate_reference(self, reference):
|
| 2264 |
+
if not isoftype(reference, self.get_prediction_type()):
|
| 2265 |
+
raise ValueError(
|
| 2266 |
+
f"Each reference is expected to be of type '{self.prediction_type}' in {self.get_metric_name()} metric. Received prediction of type {type(reference)}: {reference}"
|
| 2267 |
+
)
|
| 2268 |
+
|
| 2269 |
+
|
| 2270 |
class NDCG(GlobalMetric):
|
| 2271 |
"""Normalized Discounted Cumulative Gain: measures the quality of ranking with respect to ground truth ranking scores.
|
| 2272 |
|
|
|
|
| 2285 |
main_score = "nDCG"
|
| 2286 |
|
| 2287 |
_requirements_list: List[str] = ["sklearn"]
|
| 2288 |
+
single_reference_per_prediction = True
|
| 2289 |
+
prediction_type = "Optional[float]"
|
| 2290 |
|
| 2291 |
def prepare(self):
|
| 2292 |
from sklearn.metrics import ndcg_score
|
|
|
|
| 2303 |
from collections import defaultdict
|
| 2304 |
|
| 2305 |
query_to_predictions_and_references = defaultdict(lambda: [[], []])
|
| 2306 |
+
references = [reference[0] for reference in references]
|
| 2307 |
for reference, pred, inputs_dict in zip(references, predictions, task_data):
|
| 2308 |
query = inputs_dict.get("query")
|
| 2309 |
query_to_predictions_and_references[query][0].append(pred)
|
|
|
|
| 2334 |
|
| 2335 |
|
| 2336 |
class RetrievalMetric(InstanceMetric):
|
| 2337 |
+
prediction_type = "List[str]"
|
| 2338 |
+
single_reference_per_prediction = True
|
| 2339 |
+
|
| 2340 |
def compute(self, references: List[Any], prediction: Any, task_data: Dict) -> dict:
|
| 2341 |
# digest input
|
| 2342 |
pred_ids: List[Any] = prediction
|
| 2343 |
+
ref_ids: List[Any] = list(dict.fromkeys(references[0]))
|
| 2344 |
|
| 2345 |
# relevance_at_k: 1-based dictionary of indicators (0/1), telling whether
|
| 2346 |
# the doc id retrieved at position k (assuming it is 1-based, so k starts
|
|
|
|
| 2488 |
|
| 2489 |
|
| 2490 |
class KPA(CustomF1):
|
| 2491 |
+
prediction_type = "str"
|
| 2492 |
+
single_reference_per_prediction = True
|
| 2493 |
+
|
| 2494 |
def get_element_group(self, element, additional_input):
|
| 2495 |
return additional_input["keypoint"]
|
| 2496 |
|
|
|
|
| 3171 |
|
| 3172 |
|
| 3173 |
class BinaryMaxF1(F1Binary):
|
| 3174 |
+
"""Calculate the maximal F1 and the decision threshold that achieves it for a binary task with float predictions."""
|
| 3175 |
+
|
| 3176 |
main_score = "max_f1_binary"
|
| 3177 |
+
prediction_type = str
|
| 3178 |
+
single_reference_per_prediction = True
|
| 3179 |
|
| 3180 |
def compute(
|
| 3181 |
self,
|
|
|
|
| 3183 |
predictions: List[List[str]],
|
| 3184 |
task_data: List[Dict],
|
| 3185 |
) -> dict:
|
| 3186 |
+
float_predictions = [to_float_or_default(p) for p in predictions]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3187 |
|
| 3188 |
best_thr = -1
|
| 3189 |
best_f1 = -1
|
| 3190 |
for thr in set(float_predictions):
|
| 3191 |
new_predictions = [
|
| 3192 |
+
"1" if float_prediction >= thr else "0"
|
| 3193 |
for float_prediction in float_predictions
|
| 3194 |
]
|
| 3195 |
f1 = super().compute(references, new_predictions, task_data)[
|
|
|
|
| 3200 |
best_thr = thr
|
| 3201 |
|
| 3202 |
return {self.main_score: best_f1, "best_thr_maxf1": best_thr}
|
| 3203 |
+
|
| 3204 |
+
|
| 3205 |
+
class BinaryAccuracy(InstanceMetric):
|
| 3206 |
+
"""Calculate accuracy for a binary task, using 0.5 as the threshold in the case of float predictions."""
|
| 3207 |
+
|
| 3208 |
+
reduction_map = {"mean": ["accuracy_binary"]}
|
| 3209 |
+
main_score = "accuracy_binary"
|
| 3210 |
+
ci_scores = ["accuracy_binary"]
|
| 3211 |
+
pos_classes = {"1", "1.0", "yes", "true"}
|
| 3212 |
+
threshold = 0.5
|
| 3213 |
+
|
| 3214 |
+
prediction_type = "str"
|
| 3215 |
+
single_reference_per_prediction = True
|
| 3216 |
+
|
| 3217 |
+
def compute(
|
| 3218 |
+
self, references: List[Any], prediction: Any, task_data: List[Dict]
|
| 3219 |
+
) -> dict:
|
| 3220 |
+
float_prediction = to_float_or_default(prediction)
|
| 3221 |
+
prediction = str(int(float_prediction > self.threshold))
|
| 3222 |
+
references = ["1"] if references[0].lower() in self.pos_classes else ["0"]
|
| 3223 |
+
|
| 3224 |
+
result = {self.main_score: float([prediction] == references)}
|
| 3225 |
+
result["score"] = result[self.main_score]
|
| 3226 |
+
result["score_name"] = self.main_score
|
| 3227 |
+
return result
|
| 3228 |
+
|
| 3229 |
+
|
| 3230 |
+
class BinaryMaxAccuracy(GlobalMetric):
|
| 3231 |
+
"""Calculate the maximal accuracy and the decision threshold that achieves it for a binary task with float predictions."""
|
| 3232 |
+
|
| 3233 |
+
process_single_instances = False
|
| 3234 |
+
main_score = "max_accuracy_binary"
|
| 3235 |
+
pos_classes = {"1", "1.0", "yes", "true"}
|
| 3236 |
+
|
| 3237 |
+
prediction_type = "str"
|
| 3238 |
+
single_reference_per_prediction = True
|
| 3239 |
+
|
| 3240 |
+
def compute(
|
| 3241 |
+
self,
|
| 3242 |
+
references: List[List[str]],
|
| 3243 |
+
predictions: List[List[str]],
|
| 3244 |
+
task_data: List[Dict],
|
| 3245 |
+
) -> dict:
|
| 3246 |
+
float_predictions = [to_float_or_default(p) for p in predictions]
|
| 3247 |
+
references = [
|
| 3248 |
+
["1"] if r[0].lower() in self.pos_classes else ["0"] for r in references
|
| 3249 |
+
]
|
| 3250 |
+
|
| 3251 |
+
best_thr = -1
|
| 3252 |
+
best_acc = -1
|
| 3253 |
+
for thr in set(float_predictions):
|
| 3254 |
+
new_predictions = [
|
| 3255 |
+
"1" if float_prediction >= thr else "0"
|
| 3256 |
+
for float_prediction in float_predictions
|
| 3257 |
+
]
|
| 3258 |
+
acc = np.mean(
|
| 3259 |
+
[
|
| 3260 |
+
[prediction] == reference
|
| 3261 |
+
for prediction, reference in zip(new_predictions, references)
|
| 3262 |
+
]
|
| 3263 |
+
)
|
| 3264 |
+
if acc > best_acc:
|
| 3265 |
+
best_acc = acc
|
| 3266 |
+
best_thr = thr
|
| 3267 |
+
|
| 3268 |
+
return {self.main_score: best_acc, "best_thr_max_acc": best_thr}
|