Upload standard.py with huggingface_hub
Browse files- standard.py +94 -24
standard.py
CHANGED
|
@@ -4,11 +4,12 @@ from .card import TaskCard
|
|
| 4 |
from .dataclass import Field, InternalField, NonPositionalField, OptionalField
|
| 5 |
from .formats import Format, SystemFormat
|
| 6 |
from .logging_utils import get_logger
|
| 7 |
-
from .operator import SourceSequentialOperator, StreamingOperator
|
| 8 |
from .operators import AddFields, Augmentor, NullAugmentor, StreamRefiner
|
| 9 |
from .recipe import Recipe
|
| 10 |
from .schema import ToUnitxtGroup
|
| 11 |
from .splitters import Sampler, SeparateSplit, SpreadSplit
|
|
|
|
| 12 |
from .system_prompts import EmptySystemPrompt, SystemPrompt
|
| 13 |
from .templates import Template
|
| 14 |
|
|
@@ -99,15 +100,15 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 99 |
def prepare_refiners(self):
|
| 100 |
self.train_refiner.max_instances = self.max_train_instances
|
| 101 |
self.train_refiner.apply_to_streams = ["train"]
|
| 102 |
-
self.steps.append(self.train_refiner)
|
| 103 |
|
| 104 |
self.validation_refiner.max_instances = self.max_validation_instances
|
| 105 |
self.validation_refiner.apply_to_streams = ["validation"]
|
| 106 |
-
self.steps.append(self.validation_refiner)
|
| 107 |
|
| 108 |
self.test_refiner.max_instances = self.max_test_instances
|
| 109 |
self.test_refiner.apply_to_streams = ["test"]
|
| 110 |
-
self.steps.append(self.test_refiner)
|
| 111 |
|
| 112 |
def prepare_metrics_and_postprocessors(self):
|
| 113 |
if self.postprocessors is None:
|
|
@@ -121,9 +122,84 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 121 |
metrics = self.metrics
|
| 122 |
return metrics, postprocessors
|
| 123 |
|
| 124 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
self.steps = [
|
| 126 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
AddFields(
|
| 128 |
fields={
|
| 129 |
"recipe_metadata": {
|
|
@@ -133,25 +209,19 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 133 |
"format": self.format,
|
| 134 |
}
|
| 135 |
}
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
if self.loader_limit:
|
| 140 |
-
self.card.loader.loader_limit = self.loader_limit
|
| 141 |
-
logger.info(f"Loader line limit was set to {self.loader_limit}")
|
| 142 |
-
self.steps.append(StreamRefiner(max_instances=self.loader_limit))
|
| 143 |
|
| 144 |
-
|
| 145 |
-
self.steps.extend(self.card.preprocess_steps)
|
| 146 |
|
| 147 |
-
self.steps.append(self.card.task)
|
| 148 |
|
| 149 |
if self.augmentor.augment_task_input:
|
| 150 |
self.augmentor.set_task_input_fields(self.card.task.augmentable_inputs)
|
| 151 |
-
self.steps.append(self.augmentor)
|
| 152 |
|
| 153 |
if self.demos_pool_size is not None:
|
| 154 |
-
self.steps.append(
|
| 155 |
CreateDemosPool(
|
| 156 |
from_split=self.demos_taken_from,
|
| 157 |
to_split_names=[self.demos_pool_name, self.demos_taken_from],
|
|
@@ -173,23 +243,23 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
| 173 |
|
| 174 |
self.prepare_refiners()
|
| 175 |
|
| 176 |
-
self.steps.append(self.template)
|
| 177 |
if self.num_demos > 0:
|
| 178 |
-
self.steps.append(
|
| 179 |
AddDemosField(
|
| 180 |
source_stream=self.demos_pool_name,
|
| 181 |
target_field=self.demos_field,
|
| 182 |
sampler=self.sampler,
|
| 183 |
)
|
| 184 |
)
|
| 185 |
-
self.steps.append(self.system_prompt)
|
| 186 |
-
self.steps.append(self.format)
|
| 187 |
if self.augmentor.augment_model_input:
|
| 188 |
-
self.steps.append(self.augmentor)
|
| 189 |
|
| 190 |
metrics, postprocessors = self.prepare_metrics_and_postprocessors()
|
| 191 |
|
| 192 |
-
self.steps.append(
|
| 193 |
ToUnitxtGroup(
|
| 194 |
group="unitxt",
|
| 195 |
metrics=metrics,
|
|
|
|
| 4 |
from .dataclass import Field, InternalField, NonPositionalField, OptionalField
|
| 5 |
from .formats import Format, SystemFormat
|
| 6 |
from .logging_utils import get_logger
|
| 7 |
+
from .operator import SequentialOperator, SourceSequentialOperator, StreamingOperator
|
| 8 |
from .operators import AddFields, Augmentor, NullAugmentor, StreamRefiner
|
| 9 |
from .recipe import Recipe
|
| 10 |
from .schema import ToUnitxtGroup
|
| 11 |
from .splitters import Sampler, SeparateSplit, SpreadSplit
|
| 12 |
+
from .stream import MultiStream
|
| 13 |
from .system_prompts import EmptySystemPrompt, SystemPrompt
|
| 14 |
from .templates import Template
|
| 15 |
|
|
|
|
| 100 |
def prepare_refiners(self):
|
| 101 |
self.train_refiner.max_instances = self.max_train_instances
|
| 102 |
self.train_refiner.apply_to_streams = ["train"]
|
| 103 |
+
self.processing.steps.append(self.train_refiner)
|
| 104 |
|
| 105 |
self.validation_refiner.max_instances = self.max_validation_instances
|
| 106 |
self.validation_refiner.apply_to_streams = ["validation"]
|
| 107 |
+
self.processing.steps.append(self.validation_refiner)
|
| 108 |
|
| 109 |
self.test_refiner.max_instances = self.max_test_instances
|
| 110 |
self.test_refiner.apply_to_streams = ["test"]
|
| 111 |
+
self.processing.steps.append(self.test_refiner)
|
| 112 |
|
| 113 |
def prepare_metrics_and_postprocessors(self):
|
| 114 |
if self.postprocessors is None:
|
|
|
|
| 122 |
metrics = self.metrics
|
| 123 |
return metrics, postprocessors
|
| 124 |
|
| 125 |
+
def set_pipelines(self):
|
| 126 |
+
self.loading = SequentialOperator()
|
| 127 |
+
self.metadata = SequentialOperator()
|
| 128 |
+
self.standardization = SequentialOperator()
|
| 129 |
+
self.processing = SequentialOperator()
|
| 130 |
+
self.verblization = SequentialOperator()
|
| 131 |
+
self.finalize = SequentialOperator()
|
| 132 |
+
|
| 133 |
self.steps = [
|
| 134 |
+
self.loading,
|
| 135 |
+
self.metadata,
|
| 136 |
+
self.standardization,
|
| 137 |
+
self.processing,
|
| 138 |
+
self.verblization,
|
| 139 |
+
self.finalize,
|
| 140 |
+
]
|
| 141 |
+
|
| 142 |
+
self.inference_instance = SequentialOperator()
|
| 143 |
+
|
| 144 |
+
self.inference_instance.steps = [
|
| 145 |
+
self.metadata,
|
| 146 |
+
self.processing,
|
| 147 |
+
]
|
| 148 |
+
|
| 149 |
+
self.inference_demos = SourceSequentialOperator()
|
| 150 |
+
|
| 151 |
+
self.inference_demos.steps = [
|
| 152 |
+
self.loading,
|
| 153 |
+
self.metadata,
|
| 154 |
+
self.standardization,
|
| 155 |
+
self.processing,
|
| 156 |
+
]
|
| 157 |
+
|
| 158 |
+
self.inference = SequentialOperator()
|
| 159 |
+
|
| 160 |
+
self.inference.steps = [self.verblization, self.finalize]
|
| 161 |
+
|
| 162 |
+
self._demos_pool_cache = None
|
| 163 |
+
|
| 164 |
+
def production_preprocess(self, task_instances):
|
| 165 |
+
ms = MultiStream.from_iterables({"__inference__": task_instances})
|
| 166 |
+
return list(self.inference_instance(ms)["__inference__"])
|
| 167 |
+
|
| 168 |
+
def production_demos_pool(self):
|
| 169 |
+
if self.num_demos > 0:
|
| 170 |
+
if self._demos_pool_cache is None:
|
| 171 |
+
self._demos_pool_cache = list(
|
| 172 |
+
self.inference_demos()[self.demos_pool_name]
|
| 173 |
+
)
|
| 174 |
+
return self._demos_pool_cache
|
| 175 |
+
return []
|
| 176 |
+
|
| 177 |
+
def produce(self, task_instances):
|
| 178 |
+
"""Use the recipe in production to produce model ready query from standard task instance."""
|
| 179 |
+
self.before_process_multi_stream()
|
| 180 |
+
multi_stream = MultiStream.from_iterables(
|
| 181 |
+
{
|
| 182 |
+
"__inference__": self.production_preprocess(task_instances),
|
| 183 |
+
self.demos_pool_name: self.production_demos_pool(),
|
| 184 |
+
}
|
| 185 |
+
)
|
| 186 |
+
multi_stream = self.inference(multi_stream)
|
| 187 |
+
return list(multi_stream["__inference__"])
|
| 188 |
+
|
| 189 |
+
def prepare(self):
|
| 190 |
+
self.set_pipelines()
|
| 191 |
+
|
| 192 |
+
loader = self.card.loader
|
| 193 |
+
if self.loader_limit:
|
| 194 |
+
loader.loader_limit = self.loader_limit
|
| 195 |
+
logger.info(f"Loader line limit was set to {self.loader_limit}")
|
| 196 |
+
self.loading.steps.append(loader)
|
| 197 |
+
|
| 198 |
+
# This is required in case loader_limit is not enforced by the loader
|
| 199 |
+
if self.loader_limit:
|
| 200 |
+
self.loading.steps.append(StreamRefiner(max_instances=self.loader_limit))
|
| 201 |
+
|
| 202 |
+
self.metadata.steps.append(
|
| 203 |
AddFields(
|
| 204 |
fields={
|
| 205 |
"recipe_metadata": {
|
|
|
|
| 209 |
"format": self.format,
|
| 210 |
}
|
| 211 |
}
|
| 212 |
+
)
|
| 213 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
self.standardization.steps.extend(self.card.preprocess_steps)
|
|
|
|
| 216 |
|
| 217 |
+
self.processing.steps.append(self.card.task)
|
| 218 |
|
| 219 |
if self.augmentor.augment_task_input:
|
| 220 |
self.augmentor.set_task_input_fields(self.card.task.augmentable_inputs)
|
| 221 |
+
self.processing.steps.append(self.augmentor)
|
| 222 |
|
| 223 |
if self.demos_pool_size is not None:
|
| 224 |
+
self.processing.steps.append(
|
| 225 |
CreateDemosPool(
|
| 226 |
from_split=self.demos_taken_from,
|
| 227 |
to_split_names=[self.demos_pool_name, self.demos_taken_from],
|
|
|
|
| 243 |
|
| 244 |
self.prepare_refiners()
|
| 245 |
|
| 246 |
+
self.verblization.steps.append(self.template)
|
| 247 |
if self.num_demos > 0:
|
| 248 |
+
self.verblization.steps.append(
|
| 249 |
AddDemosField(
|
| 250 |
source_stream=self.demos_pool_name,
|
| 251 |
target_field=self.demos_field,
|
| 252 |
sampler=self.sampler,
|
| 253 |
)
|
| 254 |
)
|
| 255 |
+
self.verblization.steps.append(self.system_prompt)
|
| 256 |
+
self.verblization.steps.append(self.format)
|
| 257 |
if self.augmentor.augment_model_input:
|
| 258 |
+
self.verblization.steps.append(self.augmentor)
|
| 259 |
|
| 260 |
metrics, postprocessors = self.prepare_metrics_and_postprocessors()
|
| 261 |
|
| 262 |
+
self.finalize.steps.append(
|
| 263 |
ToUnitxtGroup(
|
| 264 |
group="unitxt",
|
| 265 |
metrics=metrics,
|