Upload struct_data_operators.py with huggingface_hub
Browse files- struct_data_operators.py +192 -5
struct_data_operators.py
CHANGED
|
@@ -1,14 +1,20 @@
|
|
| 1 |
-
"""This section describes unitxt operators for
|
| 2 |
|
| 3 |
-
These operators are specialized in handling
|
| 4 |
-
|
| 5 |
{
|
| 6 |
"header": ["col1", "col2"],
|
| 7 |
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
|
| 8 |
}
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
------------------------
|
| 11 |
"""
|
|
|
|
| 12 |
import random
|
| 13 |
from abc import ABC, abstractmethod
|
| 14 |
from copy import deepcopy
|
|
@@ -19,6 +25,8 @@ from typing import (
|
|
| 19 |
Optional,
|
| 20 |
)
|
| 21 |
|
|
|
|
|
|
|
| 22 |
from .dict_utils import dict_get
|
| 23 |
from .operators import FieldOperator, StreamInstanceOperator
|
| 24 |
|
|
@@ -35,12 +43,10 @@ class SerializeTable(ABC, FieldOperator):
|
|
| 35 |
pass
|
| 36 |
|
| 37 |
# method to process table header
|
| 38 |
-
@abstractmethod
|
| 39 |
def process_header(self, header: List):
|
| 40 |
pass
|
| 41 |
|
| 42 |
# method to process a table row
|
| 43 |
-
@abstractmethod
|
| 44 |
def process_row(self, row: List, row_index: int):
|
| 45 |
pass
|
| 46 |
|
|
@@ -140,6 +146,80 @@ class SerializeTableAsMarkdown(SerializeTable):
|
|
| 140 |
return row_str
|
| 141 |
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
# truncate cell value to maximum allowed length
|
| 144 |
def truncate_cell(cell_value, max_len):
|
| 145 |
if cell_value is None:
|
|
@@ -362,3 +442,110 @@ class ListToKeyValPairs(StreamInstanceOperator):
|
|
| 362 |
instance[self.to_field] = output_dict
|
| 363 |
|
| 364 |
return instance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""This section describes unitxt operators for structured data.
|
| 2 |
|
| 3 |
+
These operators are specialized in handling structured data like tables.
|
| 4 |
+
For tables, expected input format is:
|
| 5 |
{
|
| 6 |
"header": ["col1", "col2"],
|
| 7 |
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
|
| 8 |
}
|
| 9 |
|
| 10 |
+
For triples, expected input format is:
|
| 11 |
+
[[ "subject1", "relation1", "object1" ], [ "subject1", "relation2", "object2"]]
|
| 12 |
+
|
| 13 |
+
For key-value pairs, expected input format is:
|
| 14 |
+
{"key1": "value1", "key2": value2, "key3": "value3"}
|
| 15 |
------------------------
|
| 16 |
"""
|
| 17 |
+
import json
|
| 18 |
import random
|
| 19 |
from abc import ABC, abstractmethod
|
| 20 |
from copy import deepcopy
|
|
|
|
| 25 |
Optional,
|
| 26 |
)
|
| 27 |
|
| 28 |
+
import pandas as pd
|
| 29 |
+
|
| 30 |
from .dict_utils import dict_get
|
| 31 |
from .operators import FieldOperator, StreamInstanceOperator
|
| 32 |
|
|
|
|
| 43 |
pass
|
| 44 |
|
| 45 |
# method to process table header
|
|
|
|
| 46 |
def process_header(self, header: List):
|
| 47 |
pass
|
| 48 |
|
| 49 |
# method to process a table row
|
|
|
|
| 50 |
def process_row(self, row: List, row_index: int):
|
| 51 |
pass
|
| 52 |
|
|
|
|
| 146 |
return row_str
|
| 147 |
|
| 148 |
|
| 149 |
+
class SerializeTableAsDFLoader(SerializeTable):
|
| 150 |
+
"""DFLoader Table Serializer.
|
| 151 |
+
|
| 152 |
+
Pandas dataframe based code snippet format serializer.
|
| 153 |
+
Format(Sample):
|
| 154 |
+
pd.DataFrame({
|
| 155 |
+
"name" : ["Alex", "Diana", "Donald"],
|
| 156 |
+
"age" : [26, 34, 39]
|
| 157 |
+
},
|
| 158 |
+
index=[0,1,2])
|
| 159 |
+
"""
|
| 160 |
+
|
| 161 |
+
def process_value(self, table: Any) -> Any:
|
| 162 |
+
table_input = deepcopy(table)
|
| 163 |
+
return self.serialize_table(table_content=table_input)
|
| 164 |
+
|
| 165 |
+
# main method that serializes a table.
|
| 166 |
+
# table_content must be in the presribed input format.
|
| 167 |
+
def serialize_table(self, table_content: Dict) -> str:
|
| 168 |
+
# Extract headers and rows from the dictionary
|
| 169 |
+
header = table_content.get("header", [])
|
| 170 |
+
rows = table_content.get("rows", [])
|
| 171 |
+
|
| 172 |
+
assert header and rows, "Incorrect input table format"
|
| 173 |
+
|
| 174 |
+
# Create a pandas DataFrame
|
| 175 |
+
df = pd.DataFrame(rows, columns=header)
|
| 176 |
+
|
| 177 |
+
# Generate output string in the desired format
|
| 178 |
+
data_dict = df.to_dict(orient="list")
|
| 179 |
+
|
| 180 |
+
return (
|
| 181 |
+
"pd.DataFrame({\n"
|
| 182 |
+
+ json.dumps(data_dict)
|
| 183 |
+
+ "},\nindex="
|
| 184 |
+
+ str(list(range(len(rows))))
|
| 185 |
+
+ ")"
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
class SerializeTableAsJson(SerializeTable):
|
| 190 |
+
"""JSON Table Serializer.
|
| 191 |
+
|
| 192 |
+
Json format based serializer.
|
| 193 |
+
Format(Sample):
|
| 194 |
+
{
|
| 195 |
+
"0":{"name":"Alex","age":26},
|
| 196 |
+
"1":{"name":"Diana","age":34},
|
| 197 |
+
"2":{"name":"Donald","age":39}
|
| 198 |
+
}
|
| 199 |
+
"""
|
| 200 |
+
|
| 201 |
+
def process_value(self, table: Any) -> Any:
|
| 202 |
+
table_input = deepcopy(table)
|
| 203 |
+
return self.serialize_table(table_content=table_input)
|
| 204 |
+
|
| 205 |
+
# main method that serializes a table.
|
| 206 |
+
# table_content must be in the presribed input format.
|
| 207 |
+
def serialize_table(self, table_content: Dict) -> str:
|
| 208 |
+
# Extract headers and rows from the dictionary
|
| 209 |
+
header = table_content.get("header", [])
|
| 210 |
+
rows = table_content.get("rows", [])
|
| 211 |
+
|
| 212 |
+
assert header and rows, "Incorrect input table format"
|
| 213 |
+
|
| 214 |
+
# Generate output dictionary
|
| 215 |
+
output_dict = {}
|
| 216 |
+
for i, row in enumerate(rows):
|
| 217 |
+
output_dict[i] = {header[j]: value for j, value in enumerate(row)}
|
| 218 |
+
|
| 219 |
+
# Convert dictionary to JSON string
|
| 220 |
+
return json.dumps(output_dict)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
# truncate cell value to maximum allowed length
|
| 224 |
def truncate_cell(cell_value, max_len):
|
| 225 |
if cell_value is None:
|
|
|
|
| 442 |
instance[self.to_field] = output_dict
|
| 443 |
|
| 444 |
return instance
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
class ConvertTableColNamesToSequential(FieldOperator):
|
| 448 |
+
"""Replaces actual table column names with static sequential names like col_0, col_1,...
|
| 449 |
+
|
| 450 |
+
Sample input:
|
| 451 |
+
{
|
| 452 |
+
"header": ["name", "age"],
|
| 453 |
+
"rows": [["Alex", 21], ["Donald", 34]]
|
| 454 |
+
}
|
| 455 |
+
Sample output:
|
| 456 |
+
{
|
| 457 |
+
"header": ["col_0", "col_1"],
|
| 458 |
+
"rows": [["Alex", 21], ["Donald", 34]]
|
| 459 |
+
}
|
| 460 |
+
"""
|
| 461 |
+
|
| 462 |
+
def process_value(self, table: Any) -> Any:
|
| 463 |
+
table_input = deepcopy(table)
|
| 464 |
+
return self.replace_header(table_content=table_input)
|
| 465 |
+
|
| 466 |
+
# replaces header with sequential column names
|
| 467 |
+
def replace_header(self, table_content: Dict) -> str:
|
| 468 |
+
# Extract header from the dictionary
|
| 469 |
+
header = table_content.get("header", [])
|
| 470 |
+
|
| 471 |
+
assert header, "Input table missing header"
|
| 472 |
+
|
| 473 |
+
new_header = ["col_" + str(i) for i in range(len(header))]
|
| 474 |
+
table_content["header"] = new_header
|
| 475 |
+
|
| 476 |
+
return table_content
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
class ShuffleTableRows(FieldOperator):
|
| 480 |
+
"""Shuffles the input table rows randomly.
|
| 481 |
+
|
| 482 |
+
Sample Input:
|
| 483 |
+
{
|
| 484 |
+
"header": ["name", "age"],
|
| 485 |
+
"rows": [["Alex", 26], ["Raj", 34], ["Donald", 39]],
|
| 486 |
+
}
|
| 487 |
+
|
| 488 |
+
Sample Output:
|
| 489 |
+
{
|
| 490 |
+
"header": ["name", "age"],
|
| 491 |
+
"rows": [["Donald", 39], ["Raj", 34], ["Alex", 26]],
|
| 492 |
+
}
|
| 493 |
+
"""
|
| 494 |
+
|
| 495 |
+
def process_value(self, table: Any) -> Any:
|
| 496 |
+
table_input = deepcopy(table)
|
| 497 |
+
return self.shuffle_rows(table_content=table_input)
|
| 498 |
+
|
| 499 |
+
# shuffles table rows randomly
|
| 500 |
+
def shuffle_rows(self, table_content: Dict) -> str:
|
| 501 |
+
# extract header & rows from the dictionary
|
| 502 |
+
header = table_content.get("header", [])
|
| 503 |
+
rows = table_content.get("rows", [])
|
| 504 |
+
assert header and rows, "Incorrect input table format"
|
| 505 |
+
|
| 506 |
+
# shuffle rows
|
| 507 |
+
random.shuffle(rows)
|
| 508 |
+
table_content["rows"] = rows
|
| 509 |
+
|
| 510 |
+
return table_content
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
class ShuffleTableColumns(FieldOperator):
|
| 514 |
+
"""Shuffles the table columns randomly.
|
| 515 |
+
|
| 516 |
+
Sample Input:
|
| 517 |
+
{
|
| 518 |
+
"header": ["name", "age"],
|
| 519 |
+
"rows": [["Alex", 26], ["Raj", 34], ["Donald", 39]],
|
| 520 |
+
}
|
| 521 |
+
|
| 522 |
+
Sample Output:
|
| 523 |
+
{
|
| 524 |
+
"header": ["age", "name"],
|
| 525 |
+
"rows": [[26, "Alex"], [34, "Raj"], [39, "Donald"]],
|
| 526 |
+
}
|
| 527 |
+
"""
|
| 528 |
+
|
| 529 |
+
def process_value(self, table: Any) -> Any:
|
| 530 |
+
table_input = deepcopy(table)
|
| 531 |
+
return self.shuffle_columns(table_content=table_input)
|
| 532 |
+
|
| 533 |
+
# shuffles table columns randomly
|
| 534 |
+
def shuffle_columns(self, table_content: Dict) -> str:
|
| 535 |
+
# extract header & rows from the dictionary
|
| 536 |
+
header = table_content.get("header", [])
|
| 537 |
+
rows = table_content.get("rows", [])
|
| 538 |
+
assert header and rows, "Incorrect input table format"
|
| 539 |
+
|
| 540 |
+
# shuffle the indices first
|
| 541 |
+
indices = list(range(len(header)))
|
| 542 |
+
random.shuffle(indices) #
|
| 543 |
+
|
| 544 |
+
# shuffle the header & rows based on that indices
|
| 545 |
+
shuffled_header = [header[i] for i in indices]
|
| 546 |
+
shuffled_rows = [[row[i] for i in indices] for row in rows]
|
| 547 |
+
|
| 548 |
+
table_content["header"] = shuffled_header
|
| 549 |
+
table_content["rows"] = shuffled_rows
|
| 550 |
+
|
| 551 |
+
return table_content
|