Upload folder using huggingface_hub
Browse files- api.py +2 -1
- formats.py +3 -0
- fusion.py +3 -0
- inference.py +28 -10
- llm_as_judge_constants.py +1 -1
- loaders.py +40 -17
- metrics.py +166 -73
- processors.py +7 -0
- settings_utils.py +1 -0
- sql_utils.py +10 -3
- standard.py +1 -1
- string_operators.py +2 -0
- utils.py +77 -0
- version.py +1 -1
api.py
CHANGED
|
@@ -9,6 +9,7 @@ from datasets import Dataset, DatasetDict, IterableDataset, IterableDatasetDict
|
|
| 9 |
from datasets.exceptions import DatasetGenerationError
|
| 10 |
|
| 11 |
from .artifact import fetch_artifact
|
|
|
|
| 12 |
from .card import TaskCard
|
| 13 |
from .dataset_utils import get_dataset_artifact
|
| 14 |
from .error_utils import UnitxtError
|
|
@@ -78,7 +79,7 @@ def _verify_dataset_args(dataset_query: Optional[str] = None, dataset_args=None)
|
|
| 78 |
|
| 79 |
|
| 80 |
def load_recipe(dataset_query: Optional[str] = None, **kwargs) -> DatasetRecipe:
|
| 81 |
-
if isinstance(dataset_query, DatasetRecipe):
|
| 82 |
return dataset_query
|
| 83 |
|
| 84 |
_verify_dataset_args(dataset_query, kwargs)
|
|
|
|
| 9 |
from datasets.exceptions import DatasetGenerationError
|
| 10 |
|
| 11 |
from .artifact import fetch_artifact
|
| 12 |
+
from .benchmark import Benchmark
|
| 13 |
from .card import TaskCard
|
| 14 |
from .dataset_utils import get_dataset_artifact
|
| 15 |
from .error_utils import UnitxtError
|
|
|
|
| 79 |
|
| 80 |
|
| 81 |
def load_recipe(dataset_query: Optional[str] = None, **kwargs) -> DatasetRecipe:
|
| 82 |
+
if isinstance(dataset_query, (DatasetRecipe, Benchmark)):
|
| 83 |
return dataset_query
|
| 84 |
|
| 85 |
_verify_dataset_args(dataset_query, kwargs)
|
formats.py
CHANGED
|
@@ -18,6 +18,7 @@ from .image_operators import image_to_data_url
|
|
| 18 |
from .operator import InstanceOperator
|
| 19 |
from .settings_utils import get_constants
|
| 20 |
from .type_utils import isoftype
|
|
|
|
| 21 |
|
| 22 |
constants = get_constants()
|
| 23 |
|
|
@@ -33,6 +34,7 @@ class GraniteDocumentsFormat(Format):
|
|
| 33 |
|
| 34 |
_requirements_list = ["transformers"]
|
| 35 |
|
|
|
|
| 36 |
def prepare(self):
|
| 37 |
super().prepare()
|
| 38 |
from transformers import AutoTokenizer
|
|
@@ -487,6 +489,7 @@ class HFSystemFormat(ChatAPIFormat):
|
|
| 487 |
model_name: str
|
| 488 |
_requirements_list = ["transformers", "Jinja2"]
|
| 489 |
|
|
|
|
| 490 |
def prepare(self):
|
| 491 |
super().prepare()
|
| 492 |
from transformers import AutoTokenizer
|
|
|
|
| 18 |
from .operator import InstanceOperator
|
| 19 |
from .settings_utils import get_constants
|
| 20 |
from .type_utils import isoftype
|
| 21 |
+
from .utils import retry_connection_with_exponential_backoff
|
| 22 |
|
| 23 |
constants = get_constants()
|
| 24 |
|
|
|
|
| 34 |
|
| 35 |
_requirements_list = ["transformers"]
|
| 36 |
|
| 37 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 38 |
def prepare(self):
|
| 39 |
super().prepare()
|
| 40 |
from transformers import AutoTokenizer
|
|
|
|
| 489 |
model_name: str
|
| 490 |
_requirements_list = ["transformers", "Jinja2"]
|
| 491 |
|
| 492 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 493 |
def prepare(self):
|
| 494 |
super().prepare()
|
| 495 |
from transformers import AutoTokenizer
|
fusion.py
CHANGED
|
@@ -2,11 +2,13 @@ from abc import abstractmethod
|
|
| 2 |
from typing import Dict, Generator, List, Optional, Union
|
| 3 |
|
| 4 |
from .dataclass import NonPositionalField
|
|
|
|
| 5 |
from .operator import SourceOperator
|
| 6 |
from .random_utils import new_random_generator
|
| 7 |
from .stream import DynamicStream, MultiStream
|
| 8 |
from .type_utils import isoftype
|
| 9 |
|
|
|
|
| 10 |
|
| 11 |
class BaseFusion(SourceOperator):
|
| 12 |
"""BaseFusion operator that combines multiple multistreams into one.
|
|
@@ -76,6 +78,7 @@ class FixedFusion(BaseFusion):
|
|
| 76 |
if split not in multi_stream:
|
| 77 |
continue
|
| 78 |
emitted_from_this_split = 0
|
|
|
|
| 79 |
try:
|
| 80 |
for instance in multi_stream[split]:
|
| 81 |
if (
|
|
|
|
| 2 |
from typing import Dict, Generator, List, Optional, Union
|
| 3 |
|
| 4 |
from .dataclass import NonPositionalField
|
| 5 |
+
from .logging_utils import get_logger
|
| 6 |
from .operator import SourceOperator
|
| 7 |
from .random_utils import new_random_generator
|
| 8 |
from .stream import DynamicStream, MultiStream
|
| 9 |
from .type_utils import isoftype
|
| 10 |
|
| 11 |
+
logger = get_logger()
|
| 12 |
|
| 13 |
class BaseFusion(SourceOperator):
|
| 14 |
"""BaseFusion operator that combines multiple multistreams into one.
|
|
|
|
| 78 |
if split not in multi_stream:
|
| 79 |
continue
|
| 80 |
emitted_from_this_split = 0
|
| 81 |
+
logger.info(f"Processing {split} from {origin_name}...")
|
| 82 |
try:
|
| 83 |
for instance in multi_stream[split]:
|
| 84 |
if (
|
inference.py
CHANGED
|
@@ -31,7 +31,6 @@ from typing import (
|
|
| 31 |
)
|
| 32 |
|
| 33 |
from datasets import Dataset, DatasetDict, Image
|
| 34 |
-
from diskcache import Cache
|
| 35 |
from tqdm import tqdm, trange
|
| 36 |
from tqdm.asyncio import tqdm_asyncio
|
| 37 |
|
|
@@ -50,6 +49,7 @@ from .operator import PackageRequirementsMixin
|
|
| 50 |
from .operators import ArtifactFetcherMixin
|
| 51 |
from .settings_utils import get_constants, get_settings
|
| 52 |
from .type_utils import isoftype
|
|
|
|
| 53 |
|
| 54 |
constants = get_constants()
|
| 55 |
settings = get_settings()
|
|
@@ -183,7 +183,9 @@ class InferenceEngine(Artifact):
|
|
| 183 |
if not settings.mock_inference_mode:
|
| 184 |
super().prepare() # no need to prepare a mock
|
| 185 |
self.prepare_engine()
|
| 186 |
-
|
|
|
|
|
|
|
| 187 |
|
| 188 |
def __call__(
|
| 189 |
self,
|
|
@@ -199,6 +201,7 @@ class InferenceEngine(Artifact):
|
|
| 199 |
def _get_cache_key(self, instance: Dict[str, Any]) -> str:
|
| 200 |
"""Generate a unique cache key for each input."""
|
| 201 |
record = self.get_instance_cache_key(instance)
|
|
|
|
| 202 |
record.update(self.to_dict())
|
| 203 |
instance_str = json.dumps(record, sort_keys=True)
|
| 204 |
return hashlib.md5(instance_str.encode()).hexdigest()
|
|
@@ -875,6 +878,7 @@ class HFPeftInferenceEngine(HFAutoModelInferenceEngine):
|
|
| 875 |
self.peft_config.base_model_name_or_path
|
| 876 |
)
|
| 877 |
|
|
|
|
| 878 |
def _init_model(self):
|
| 879 |
from peft import AutoPeftModelForCausalLM, AutoPeftModelForSeq2SeqLM
|
| 880 |
from transformers import AutoConfig
|
|
@@ -938,14 +942,26 @@ class HFPipelineBasedInferenceEngine(
|
|
| 938 |
if settings.hf_offline_models_path is not None:
|
| 939 |
path = os.path.join(settings.hf_offline_models_path, path)
|
| 940 |
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 949 |
|
| 950 |
def _get_model_args(self) -> Dict[str, Any]:
|
| 951 |
import torch
|
|
@@ -977,6 +993,7 @@ class HFPipelineBasedInferenceEngine(
|
|
| 977 |
|
| 978 |
return args
|
| 979 |
|
|
|
|
| 980 |
def _create_pipeline(self, model_args: Dict[str, Any]):
|
| 981 |
from transformers import AutoTokenizer, pipeline
|
| 982 |
|
|
@@ -3336,6 +3353,7 @@ class HFOptionSelectingInferenceEngine(InferenceEngine, TorchDeviceMixin):
|
|
| 3336 |
def get_engine_id(self):
|
| 3337 |
return get_model_and_label_id(self.model_name, self.label)
|
| 3338 |
|
|
|
|
| 3339 |
def prepare_engine(self):
|
| 3340 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3341 |
|
|
|
|
| 31 |
)
|
| 32 |
|
| 33 |
from datasets import Dataset, DatasetDict, Image
|
|
|
|
| 34 |
from tqdm import tqdm, trange
|
| 35 |
from tqdm.asyncio import tqdm_asyncio
|
| 36 |
|
|
|
|
| 49 |
from .operators import ArtifactFetcherMixin
|
| 50 |
from .settings_utils import get_constants, get_settings
|
| 51 |
from .type_utils import isoftype
|
| 52 |
+
from .utils import retry_connection_with_exponential_backoff
|
| 53 |
|
| 54 |
constants = get_constants()
|
| 55 |
settings = get_settings()
|
|
|
|
| 183 |
if not settings.mock_inference_mode:
|
| 184 |
super().prepare() # no need to prepare a mock
|
| 185 |
self.prepare_engine()
|
| 186 |
+
if self.use_cache:
|
| 187 |
+
from diskcache import Cache
|
| 188 |
+
self._cache = Cache(settings.inference_engine_cache_path + self.__class__.__name__)
|
| 189 |
|
| 190 |
def __call__(
|
| 191 |
self,
|
|
|
|
| 201 |
def _get_cache_key(self, instance: Dict[str, Any]) -> str:
|
| 202 |
"""Generate a unique cache key for each input."""
|
| 203 |
record = self.get_instance_cache_key(instance)
|
| 204 |
+
record["version"] = constants.version
|
| 205 |
record.update(self.to_dict())
|
| 206 |
instance_str = json.dumps(record, sort_keys=True)
|
| 207 |
return hashlib.md5(instance_str.encode()).hexdigest()
|
|
|
|
| 878 |
self.peft_config.base_model_name_or_path
|
| 879 |
)
|
| 880 |
|
| 881 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 882 |
def _init_model(self):
|
| 883 |
from peft import AutoPeftModelForCausalLM, AutoPeftModelForSeq2SeqLM
|
| 884 |
from transformers import AutoConfig
|
|
|
|
| 942 |
if settings.hf_offline_models_path is not None:
|
| 943 |
path = os.path.join(settings.hf_offline_models_path, path)
|
| 944 |
|
| 945 |
+
try:
|
| 946 |
+
# Try loading as a full model (HF model or local full model)
|
| 947 |
+
config = AutoConfig.from_pretrained(path, trust_remote_code=True)
|
| 948 |
+
|
| 949 |
+
except Exception:
|
| 950 |
+
try:
|
| 951 |
+
from peft import PeftConfig
|
| 952 |
+
# If full model loading fails, try loading as a PEFT adapter
|
| 953 |
+
peft_config = PeftConfig.from_pretrained(path)
|
| 954 |
+
|
| 955 |
+
if not peft_config.base_model_name_or_path:
|
| 956 |
+
raise ValueError(f"Base model name not found in PEFT config for {path}")
|
| 957 |
+
|
| 958 |
+
# Load the base model's config
|
| 959 |
+
config = AutoConfig.from_pretrained(peft_config.base_model_name_or_path, trust_remote_code=True)
|
| 960 |
+
except Exception as err2:
|
| 961 |
+
raise ValueError(f"Could not determine model type for: {path}") from err2
|
| 962 |
+
|
| 963 |
+
|
| 964 |
+
self.task = "text2text-generation" if config.is_encoder_decoder else "text-generation"
|
| 965 |
|
| 966 |
def _get_model_args(self) -> Dict[str, Any]:
|
| 967 |
import torch
|
|
|
|
| 993 |
|
| 994 |
return args
|
| 995 |
|
| 996 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 997 |
def _create_pipeline(self, model_args: Dict[str, Any]):
|
| 998 |
from transformers import AutoTokenizer, pipeline
|
| 999 |
|
|
|
|
| 3353 |
def get_engine_id(self):
|
| 3354 |
return get_model_and_label_id(self.model_name, self.label)
|
| 3355 |
|
| 3356 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 3357 |
def prepare_engine(self):
|
| 3358 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3359 |
|
llm_as_judge_constants.py
CHANGED
|
@@ -85,7 +85,7 @@ class EvaluatorNameEnum(str, Enum):
|
|
| 85 |
|
| 86 |
class ModelProviderEnum(str, Enum):
|
| 87 |
WATSONX = "watsonx"
|
| 88 |
-
OPENAI = "
|
| 89 |
RITS = "rits"
|
| 90 |
AZURE_OPENAI = "azure"
|
| 91 |
|
|
|
|
| 85 |
|
| 86 |
class ModelProviderEnum(str, Enum):
|
| 87 |
WATSONX = "watsonx"
|
| 88 |
+
OPENAI = "open-ai"
|
| 89 |
RITS = "rits"
|
| 90 |
AZURE_OPENAI = "azure"
|
| 91 |
|
loaders.py
CHANGED
|
@@ -57,7 +57,6 @@ import pandas as pd
|
|
| 57 |
import requests
|
| 58 |
from datasets import (
|
| 59 |
DatasetDict,
|
| 60 |
-
DownloadConfig,
|
| 61 |
IterableDataset,
|
| 62 |
IterableDatasetDict,
|
| 63 |
get_dataset_split_names,
|
|
@@ -75,7 +74,7 @@ from .operators import Set
|
|
| 75 |
from .settings_utils import get_settings
|
| 76 |
from .stream import DynamicStream, MultiStream
|
| 77 |
from .type_utils import isoftype
|
| 78 |
-
from .utils import LRUCache, recursive_copy
|
| 79 |
|
| 80 |
logger = get_logger()
|
| 81 |
settings = get_settings()
|
|
@@ -84,6 +83,7 @@ class UnitxtUnverifiedCodeError(UnitxtError):
|
|
| 84 |
def __init__(self, path):
|
| 85 |
super().__init__(f"Loader cannot load and run remote code from {path} in huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE.", Documentation.SETTINGS)
|
| 86 |
|
|
|
|
| 87 |
def hf_load_dataset(path: str, *args, **kwargs):
|
| 88 |
if settings.hf_offline_datasets_path is not None:
|
| 89 |
path = os.path.join(settings.hf_offline_datasets_path, path)
|
|
@@ -91,9 +91,6 @@ def hf_load_dataset(path: str, *args, **kwargs):
|
|
| 91 |
return _hf_load_dataset(
|
| 92 |
path,
|
| 93 |
*args, **kwargs,
|
| 94 |
-
download_config=DownloadConfig(
|
| 95 |
-
max_retries=settings.loaders_max_retries,
|
| 96 |
-
),
|
| 97 |
verification_mode="no_checks",
|
| 98 |
trust_remote_code=settings.allow_unverified_code,
|
| 99 |
download_mode= "force_redownload" if settings.disable_hf_datasets_cache else "reuse_dataset_if_exists"
|
|
@@ -101,6 +98,24 @@ def hf_load_dataset(path: str, *args, **kwargs):
|
|
| 101 |
except ValueError as e:
|
| 102 |
if "trust_remote_code" in str(e):
|
| 103 |
raise UnitxtUnverifiedCodeError(path) from e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
class Loader(SourceOperator):
|
| 106 |
"""A base class for all loaders.
|
|
@@ -287,6 +302,9 @@ class LoadHF(LazyLoader):
|
|
| 287 |
return settings.stream_hf_datasets_by_default
|
| 288 |
return self.streaming
|
| 289 |
|
|
|
|
|
|
|
|
|
|
| 290 |
# returns Dict when split names are not known in advance, and just the the single split dataset - if known
|
| 291 |
def load_dataset(
|
| 292 |
self, split: str, streaming=None, disable_memory_caching=False
|
|
@@ -307,9 +325,15 @@ class LoadHF(LazyLoader):
|
|
| 307 |
split=split,
|
| 308 |
num_proc=self.num_proc,
|
| 309 |
)
|
| 310 |
-
|
|
|
|
|
|
|
|
|
|
| 311 |
if not disable_memory_caching:
|
|
|
|
| 312 |
self.__class__._loader_cache[dataset_id] = dataset
|
|
|
|
|
|
|
| 313 |
return dataset
|
| 314 |
|
| 315 |
def _maybe_set_classification_policy(self):
|
|
@@ -323,22 +347,16 @@ class LoadHF(LazyLoader):
|
|
| 323 |
None, # No warning when loading from public hub
|
| 324 |
)
|
| 325 |
|
|
|
|
| 326 |
def get_splits(self):
|
| 327 |
if self.splits is not None:
|
| 328 |
return self.splits
|
| 329 |
try:
|
| 330 |
-
return
|
| 331 |
path=self.path,
|
| 332 |
-
|
| 333 |
-
trust_remote_code=settings.allow_unverified_code,
|
| 334 |
-
download_config=DownloadConfig(
|
| 335 |
-
max_retries=settings.loaders_max_retries,
|
| 336 |
-
extract_on_the_fly=True,
|
| 337 |
-
),
|
| 338 |
)
|
| 339 |
-
except Exception
|
| 340 |
-
if "trust_remote_code" in str(e):
|
| 341 |
-
raise UnitxtUnverifiedCodeError(self.path) from e
|
| 342 |
UnitxtWarning(
|
| 343 |
f'LoadHF(path="{self.path}", name="{self.name}") could not retrieve split names without loading the dataset. Consider defining "splits" in the LoadHF definition to improve loading time.'
|
| 344 |
)
|
|
@@ -350,11 +368,16 @@ class LoadHF(LazyLoader):
|
|
| 350 |
NotImplementedError
|
| 351 |
): # streaming is not supported for zipped files so we load without streaming
|
| 352 |
dataset = self.load_dataset(split=None, streaming=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
return list(dataset.keys())
|
| 354 |
|
| 355 |
def split_generator(self, split: str) -> Generator:
|
| 356 |
if self.get_limit() is not None:
|
| 357 |
-
self.
|
|
|
|
| 358 |
try:
|
| 359 |
dataset = self.load_dataset(split=split)
|
| 360 |
except (
|
|
|
|
| 57 |
import requests
|
| 58 |
from datasets import (
|
| 59 |
DatasetDict,
|
|
|
|
| 60 |
IterableDataset,
|
| 61 |
IterableDatasetDict,
|
| 62 |
get_dataset_split_names,
|
|
|
|
| 74 |
from .settings_utils import get_settings
|
| 75 |
from .stream import DynamicStream, MultiStream
|
| 76 |
from .type_utils import isoftype
|
| 77 |
+
from .utils import LRUCache, recursive_copy, retry_connection_with_exponential_backoff
|
| 78 |
|
| 79 |
logger = get_logger()
|
| 80 |
settings = get_settings()
|
|
|
|
| 83 |
def __init__(self, path):
|
| 84 |
super().__init__(f"Loader cannot load and run remote code from {path} in huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE.", Documentation.SETTINGS)
|
| 85 |
|
| 86 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 87 |
def hf_load_dataset(path: str, *args, **kwargs):
|
| 88 |
if settings.hf_offline_datasets_path is not None:
|
| 89 |
path = os.path.join(settings.hf_offline_datasets_path, path)
|
|
|
|
| 91 |
return _hf_load_dataset(
|
| 92 |
path,
|
| 93 |
*args, **kwargs,
|
|
|
|
|
|
|
|
|
|
| 94 |
verification_mode="no_checks",
|
| 95 |
trust_remote_code=settings.allow_unverified_code,
|
| 96 |
download_mode= "force_redownload" if settings.disable_hf_datasets_cache else "reuse_dataset_if_exists"
|
|
|
|
| 98 |
except ValueError as e:
|
| 99 |
if "trust_remote_code" in str(e):
|
| 100 |
raise UnitxtUnverifiedCodeError(path) from e
|
| 101 |
+
raise e # Re raise
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 105 |
+
def hf_get_dataset_splits(path: str, name: str):
|
| 106 |
+
try:
|
| 107 |
+
return get_dataset_split_names(
|
| 108 |
+
path=path,
|
| 109 |
+
config_name=name,
|
| 110 |
+
trust_remote_code=settings.allow_unverified_code,
|
| 111 |
+
)
|
| 112 |
+
except Exception as e:
|
| 113 |
+
if "trust_remote_code" in str(e):
|
| 114 |
+
raise UnitxtUnverifiedCodeError(path) from e
|
| 115 |
+
|
| 116 |
+
if "Couldn't find cache" in str(e):
|
| 117 |
+
raise FileNotFoundError(f"Dataset cache path={path}, name={name} was not found.") from e
|
| 118 |
+
raise e # Re raise
|
| 119 |
|
| 120 |
class Loader(SourceOperator):
|
| 121 |
"""A base class for all loaders.
|
|
|
|
| 302 |
return settings.stream_hf_datasets_by_default
|
| 303 |
return self.streaming
|
| 304 |
|
| 305 |
+
def is_in_cache(self, split):
|
| 306 |
+
dataset_id = str(self) + "_" + str(split)
|
| 307 |
+
return dataset_id in self.__class__._loader_cache
|
| 308 |
# returns Dict when split names are not known in advance, and just the the single split dataset - if known
|
| 309 |
def load_dataset(
|
| 310 |
self, split: str, streaming=None, disable_memory_caching=False
|
|
|
|
| 325 |
split=split,
|
| 326 |
num_proc=self.num_proc,
|
| 327 |
)
|
| 328 |
+
|
| 329 |
+
if dataset is None:
|
| 330 |
+
raise NotImplementedError() from None
|
| 331 |
+
|
| 332 |
if not disable_memory_caching:
|
| 333 |
+
self.__class__._loader_cache.max_size = settings.loader_cache_size
|
| 334 |
self.__class__._loader_cache[dataset_id] = dataset
|
| 335 |
+
self._already_logged_limited_loading = True
|
| 336 |
+
|
| 337 |
return dataset
|
| 338 |
|
| 339 |
def _maybe_set_classification_policy(self):
|
|
|
|
| 347 |
None, # No warning when loading from public hub
|
| 348 |
)
|
| 349 |
|
| 350 |
+
@retry_connection_with_exponential_backoff(max_retries=3, backoff_factor=2)
|
| 351 |
def get_splits(self):
|
| 352 |
if self.splits is not None:
|
| 353 |
return self.splits
|
| 354 |
try:
|
| 355 |
+
return hf_get_dataset_splits(
|
| 356 |
path=self.path,
|
| 357 |
+
name=self.name,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
)
|
| 359 |
+
except Exception:
|
|
|
|
|
|
|
| 360 |
UnitxtWarning(
|
| 361 |
f'LoadHF(path="{self.path}", name="{self.name}") could not retrieve split names without loading the dataset. Consider defining "splits" in the LoadHF definition to improve loading time.'
|
| 362 |
)
|
|
|
|
| 368 |
NotImplementedError
|
| 369 |
): # streaming is not supported for zipped files so we load without streaming
|
| 370 |
dataset = self.load_dataset(split=None, streaming=False)
|
| 371 |
+
|
| 372 |
+
if dataset is None:
|
| 373 |
+
raise FileNotFoundError(f"Dataset path={self.path}, name={self.name} was not found.") from None
|
| 374 |
+
|
| 375 |
return list(dataset.keys())
|
| 376 |
|
| 377 |
def split_generator(self, split: str) -> Generator:
|
| 378 |
if self.get_limit() is not None:
|
| 379 |
+
if not self.is_in_cache(split):
|
| 380 |
+
self.log_limited_loading()
|
| 381 |
try:
|
| 382 |
dataset = self.load_dataset(split=split)
|
| 383 |
except (
|
metrics.py
CHANGED
|
@@ -29,7 +29,6 @@ import numpy
|
|
| 29 |
import numpy as np
|
| 30 |
import pandas as pd
|
| 31 |
import requests
|
| 32 |
-
from datasets import DownloadConfig
|
| 33 |
from scipy.stats import bootstrap
|
| 34 |
from scipy.stats._warnings_errors import DegenerateDataWarning
|
| 35 |
|
|
@@ -65,14 +64,14 @@ from .random_utils import get_seed
|
|
| 65 |
from .settings_utils import get_settings
|
| 66 |
from .stream import MultiStream, Stream
|
| 67 |
from .type_utils import Type, isoftype, parse_type_string, to_type_string
|
| 68 |
-
from .utils import deep_copy, recursive_copy
|
| 69 |
|
| 70 |
logger = get_logger()
|
| 71 |
settings = get_settings()
|
| 72 |
|
| 73 |
warnings.filterwarnings("ignore", category=DegenerateDataWarning)
|
| 74 |
|
| 75 |
-
|
| 76 |
def hf_evaluate_load(path: str, *args, **kwargs):
|
| 77 |
if settings.hf_offline_metrics_path is not None:
|
| 78 |
path = os.path.join(settings.hf_offline_metrics_path, path)
|
|
@@ -81,9 +80,6 @@ def hf_evaluate_load(path: str, *args, **kwargs):
|
|
| 81 |
*args,
|
| 82 |
**kwargs,
|
| 83 |
experiment_id=str(uuid.uuid4()),
|
| 84 |
-
download_config=DownloadConfig(
|
| 85 |
-
max_retries=settings.loaders_max_retries,
|
| 86 |
-
),
|
| 87 |
verification_mode="no_checks",
|
| 88 |
trust_remote_code=settings.allow_unverified_code,
|
| 89 |
download_mode=(
|
|
@@ -127,6 +123,7 @@ def nan_max(x):
|
|
| 127 |
warnings.simplefilter("ignore", category=RuntimeWarning)
|
| 128 |
return np.nanmax(x)
|
| 129 |
|
|
|
|
| 130 |
def nan_std(x):
|
| 131 |
with warnings.catch_warnings():
|
| 132 |
warnings.simplefilter("ignore", category=RuntimeWarning)
|
|
@@ -398,12 +395,14 @@ class Statistic:
|
|
| 398 |
result = np.array([scores[m] for m in self.score_names])
|
| 399 |
self._history.append(result)
|
| 400 |
return result
|
|
|
|
| 401 |
def mean(self, idx):
|
| 402 |
return nan_mean([result[idx] for result in self._history])
|
| 403 |
|
| 404 |
def std(self, idx):
|
| 405 |
return nan_std([result[idx] for result in self._history])
|
| 406 |
|
|
|
|
| 407 |
class ConfidenceIntervalMixin(Artifact):
|
| 408 |
n_resamples: int = 1000
|
| 409 |
confidence_level: float = 0.95
|
|
@@ -413,18 +412,16 @@ class ConfidenceIntervalMixin(Artifact):
|
|
| 413 |
def _sample_to_scores(self, sample: List[Any]) -> Dict[str, Any]:
|
| 414 |
pass
|
| 415 |
|
| 416 |
-
|
| 417 |
def bootstrap(self, data: List[Any], score_names: List[str]):
|
| 418 |
if self.ci_score_names is not None:
|
| 419 |
score_names = self.ci_score_names
|
| 420 |
|
| 421 |
-
|
| 422 |
statistic = Statistic(data, score_names, self._sample_to_scores)
|
| 423 |
with warnings.catch_warnings():
|
| 424 |
-
warnings.filterwarnings(
|
| 425 |
"ignore",
|
| 426 |
message="invalid value encountered in divide",
|
| 427 |
-
category=RuntimeWarning
|
| 428 |
)
|
| 429 |
|
| 430 |
intervals = bootstrap(
|
|
@@ -438,14 +435,17 @@ class ConfidenceIntervalMixin(Artifact):
|
|
| 438 |
method="BCa",
|
| 439 |
).confidence_interval
|
| 440 |
|
| 441 |
-
|
| 442 |
result = {}
|
| 443 |
for i, metric in enumerate(score_names):
|
| 444 |
high = intervals.high[i]
|
| 445 |
low = intervals.low[i]
|
| 446 |
if np.isnan(high) and np.isnan(low):
|
| 447 |
-
if
|
| 448 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
result[f"{metric}_ci_low"] = float(low)
|
| 450 |
result[f"{metric}_ci_high"] = float(high)
|
| 451 |
|
|
@@ -2807,7 +2807,7 @@ class FinQAEval(InstanceMetric):
|
|
| 2807 |
remote_url = "https://raw.githubusercontent.com/czyssrs/FinQA/dfc5b72c01ee17c442d28d5201b82a1f4e95d5af/code/evaluate/evaluate.py"
|
| 2808 |
local_filepath = "/tmp/finqa_eval_script.py"
|
| 2809 |
module_name = "finqa_eval"
|
| 2810 |
-
hash_of_script = "42430b8613082bb4b85d49210284135d"
|
| 2811 |
|
| 2812 |
download_finqa_eval_script_file(remote_url, local_filepath, hash_of_script)
|
| 2813 |
self.finqa_module = load_finqa_eval_module_from_file(
|
|
@@ -3415,10 +3415,11 @@ class CustomF1(GlobalMetric):
|
|
| 3415 |
|
| 3416 |
class KeyValueExtraction(GlobalMetric):
|
| 3417 |
|
| 3418 |
-
prediction_type = Dict[str,str]
|
| 3419 |
-
metric
|
| 3420 |
single_reference_per_prediction = True
|
| 3421 |
main_score = ""
|
|
|
|
| 3422 |
def prepare(self):
|
| 3423 |
super().prepare()
|
| 3424 |
self.main_score = f"{self.metric.main_score}_micro"
|
|
@@ -3436,18 +3437,25 @@ class KeyValueExtraction(GlobalMetric):
|
|
| 3436 |
for reference in references:
|
| 3437 |
all_reference_keys.update(list(reference.keys()))
|
| 3438 |
for key in all_reference_keys:
|
| 3439 |
-
key_statistics[key]= []
|
| 3440 |
|
| 3441 |
-
num_prediction_keys=0
|
| 3442 |
-
illegal_prediction_keys=0
|
| 3443 |
for reference, prediction in zip(references, predictions):
|
| 3444 |
for key in all_reference_keys:
|
| 3445 |
-
if
|
| 3446 |
continue
|
| 3447 |
-
if
|
| 3448 |
-
multi_stream = MultiStream.from_iterables(
|
| 3449 |
-
|
| 3450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3451 |
output_multi_stream = self.metric(multi_stream)
|
| 3452 |
output_stream = output_multi_stream["test"]
|
| 3453 |
score = next(iter(output_stream))["score"]["global"]["score"]
|
|
@@ -3460,7 +3468,7 @@ class KeyValueExtraction(GlobalMetric):
|
|
| 3460 |
if key not in all_reference_keys:
|
| 3461 |
illegal_prediction_keys += 1
|
| 3462 |
|
| 3463 |
-
result={}
|
| 3464 |
|
| 3465 |
average = 0
|
| 3466 |
total = 0
|
|
@@ -3476,13 +3484,16 @@ class KeyValueExtraction(GlobalMetric):
|
|
| 3476 |
|
| 3477 |
result[f"{self.metric.main_score}_micro"] = weighted_average / total
|
| 3478 |
result[f"{self.metric.main_score}_macro"] = average / len(key_statistics)
|
| 3479 |
-
if
|
| 3480 |
-
result[f"{self.metric.main_score}_legal_keys_in_predictions"] =
|
|
|
|
|
|
|
| 3481 |
else:
|
| 3482 |
result[f"{self.metric.main_score}_legal_keys_in_predictions"] = 0
|
| 3483 |
|
| 3484 |
return result
|
| 3485 |
|
|
|
|
| 3486 |
class NER(CustomF1):
|
| 3487 |
"""F1 Metrics that receives as input a list of (Entity,EntityType) pairs."""
|
| 3488 |
|
|
@@ -3713,6 +3724,7 @@ class Detector(BulkInstanceMetric):
|
|
| 3713 |
|
| 3714 |
_requirements_list: List[str] = ["transformers", "torch"]
|
| 3715 |
|
|
|
|
| 3716 |
def prepare(self):
|
| 3717 |
super().prepare()
|
| 3718 |
import torch
|
|
@@ -3753,6 +3765,7 @@ class RegardMetric(GlobalMetric):
|
|
| 3753 |
|
| 3754 |
_requirements_list: List[str] = ["transformers", "torch", "tqdm"]
|
| 3755 |
|
|
|
|
| 3756 |
def prepare(self):
|
| 3757 |
super().prepare()
|
| 3758 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
@@ -3942,6 +3955,7 @@ class SafetyMetric(MapReduceMetric[str, Tuple[float, str]], TorchDeviceMixin):
|
|
| 3942 |
|
| 3943 |
return result
|
| 3944 |
|
|
|
|
| 3945 |
def prepare(self):
|
| 3946 |
super().prepare()
|
| 3947 |
from transformers import pipeline
|
|
@@ -4121,6 +4135,7 @@ class Perplexity(BulkInstanceMetric):
|
|
| 4121 |
|
| 4122 |
_requirements_list: List[str] = ["transformers", "torch"]
|
| 4123 |
|
|
|
|
| 4124 |
def compute(
|
| 4125 |
self,
|
| 4126 |
references: List[List[Any]],
|
|
@@ -4394,6 +4409,7 @@ class FaithfulnessHHEM(BulkInstanceMetric):
|
|
| 4394 |
|
| 4395 |
_requirements_list: List[str] = ["transformers", "torch"]
|
| 4396 |
|
|
|
|
| 4397 |
def prepare(self):
|
| 4398 |
super().prepare()
|
| 4399 |
import torch
|
|
@@ -6051,6 +6067,7 @@ class GraniteGuardianBase(InstanceMetric):
|
|
| 6051 |
|
| 6052 |
_requirements_list: List[str] = ["torch", "transformers"]
|
| 6053 |
|
|
|
|
| 6054 |
def prepare(self):
|
| 6055 |
from transformers import AutoTokenizer
|
| 6056 |
|
|
@@ -6116,9 +6133,18 @@ class GraniteGuardianBase(InstanceMetric):
|
|
| 6116 |
)
|
| 6117 |
messages = self.process_input_fields(task_data)
|
| 6118 |
prompt = self.get_prompt(messages)
|
| 6119 |
-
data_classification_policy = task_data.get("metadata", {}).get(
|
|
|
|
|
|
|
| 6120 |
|
| 6121 |
-
result = self.inference_engine.infer_log_probs(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6122 |
|
| 6123 |
generated_tokens_list = result[0]
|
| 6124 |
label, prob_of_risk = self.parse_output(generated_tokens_list)
|
|
@@ -6371,13 +6397,20 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
| 6371 |
df1.fillna(0, inplace=True)
|
| 6372 |
df2.fillna(0, inplace=True)
|
| 6373 |
|
|
|
|
| 6374 |
if df1.shape != df2.shape:
|
| 6375 |
return False
|
| 6376 |
|
| 6377 |
-
|
| 6378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6379 |
|
| 6380 |
-
|
|
|
|
| 6381 |
|
| 6382 |
@staticmethod
|
| 6383 |
def compare_dfs_ignore_colnames_unordered_rows(df1, df2):
|
|
@@ -6391,46 +6424,85 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
| 6391 |
True if the DataFrames have the same content (ignoring column names and row order),
|
| 6392 |
False otherwise.
|
| 6393 |
"""
|
| 6394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6395 |
|
| 6396 |
@staticmethod
|
| 6397 |
-
def
|
| 6398 |
-
"""Checks if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6399 |
|
| 6400 |
Args:
|
| 6401 |
-
df1: Pandas DataFrame 1 to compare.
|
| 6402 |
-
df2: Pandas DataFrame 2 to compare.
|
|
|
|
| 6403 |
|
| 6404 |
Returns:
|
| 6405 |
-
True if df1 is a subset of df2 based on
|
| 6406 |
-
False otherwise.
|
| 6407 |
"""
|
| 6408 |
-
|
| 6409 |
-
|
| 6410 |
-
|
| 6411 |
-
|
| 6412 |
-
|
| 6413 |
-
|
| 6414 |
-
|
| 6415 |
-
|
| 6416 |
-
return
|
| 6417 |
-
|
| 6418 |
-
|
| 6419 |
-
|
| 6420 |
-
|
| 6421 |
-
|
| 6422 |
-
|
| 6423 |
-
|
| 6424 |
-
|
| 6425 |
-
|
| 6426 |
-
|
| 6427 |
-
|
| 6428 |
-
|
| 6429 |
-
|
| 6430 |
-
|
| 6431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6432 |
|
| 6433 |
-
return
|
| 6434 |
|
| 6435 |
def get_sql_execution_results(
|
| 6436 |
self, predicted_sql: str, gold_sql: str, connector
|
|
@@ -6446,7 +6518,7 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
| 6446 |
a 12-tuple of
|
| 6447 |
1. execution_result: if df responses match
|
| 6448 |
2. non_empty_execution_result: if dfs are non-empty and match
|
| 6449 |
-
3. subset_non_empty_execution_result: if non-empty dfs and
|
| 6450 |
4. non_empty_gold_df: if gt df is non-empty
|
| 6451 |
5. gold_sql_runtime: ground truth query runtime
|
| 6452 |
6. predicted_sql_runtime: predicted query runtime
|
|
@@ -6569,12 +6641,21 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
| 6569 |
pred_res = pred_res["results"]
|
| 6570 |
predicted_df = pd.DataFrame(pred_res)
|
| 6571 |
|
|
|
|
|
|
|
| 6572 |
if "ORDER BY" in gold_sql.upper():
|
| 6573 |
execution_result = (
|
| 6574 |
1
|
| 6575 |
if self.compare_dfs_ignore_colnames_ordered_rows(predicted_df, gold_df)
|
| 6576 |
else 0
|
| 6577 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6578 |
else:
|
| 6579 |
execution_result = (
|
| 6580 |
1
|
|
@@ -6583,14 +6664,13 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
| 6583 |
)
|
| 6584 |
else 0
|
| 6585 |
)
|
| 6586 |
-
|
| 6587 |
-
|
| 6588 |
-
|
| 6589 |
-
|
| 6590 |
-
|
| 6591 |
-
|
| 6592 |
-
|
| 6593 |
-
subset_non_empty_execution_result = 1
|
| 6594 |
|
| 6595 |
return (
|
| 6596 |
execution_result,
|
|
@@ -6672,6 +6752,7 @@ class SQLNonExecutionAccuracy(InstanceMetric):
|
|
| 6672 |
"sqlglot_optimized_equivalence",
|
| 6673 |
"sqlparse_equivalence",
|
| 6674 |
"sql_exact_match",
|
|
|
|
| 6675 |
]
|
| 6676 |
}
|
| 6677 |
main_score = "sqlglot_equivalence"
|
|
@@ -6682,6 +6763,7 @@ class SQLNonExecutionAccuracy(InstanceMetric):
|
|
| 6682 |
"sqlglot_optimized_equivalence",
|
| 6683 |
"sqlparse_equivalence",
|
| 6684 |
"sql_exact_match",
|
|
|
|
| 6685 |
]
|
| 6686 |
|
| 6687 |
prediction_type = "Any" # string representation is compared
|
|
@@ -6729,6 +6811,17 @@ class SQLNonExecutionAccuracy(InstanceMetric):
|
|
| 6729 |
),
|
| 6730 |
"sql_exact_match": float(sql_exact_match(predicted_sql, gold_sql)),
|
| 6731 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6732 |
logger.debug(f"SQL Non Execution Accuracy Result: {result}")
|
| 6733 |
result["score"] = result[self.main_score]
|
| 6734 |
result["score_name"] = self.main_score
|
|
|
|
| 29 |
import numpy as np
|
| 30 |
import pandas as pd
|
| 31 |
import requests
|
|
|
|
| 32 |
from scipy.stats import bootstrap
|
| 33 |
from scipy.stats._warnings_errors import DegenerateDataWarning
|
| 34 |
|
|
|
|
| 64 |
from .settings_utils import get_settings
|
| 65 |
from .stream import MultiStream, Stream
|
| 66 |
from .type_utils import Type, isoftype, parse_type_string, to_type_string
|
| 67 |
+
from .utils import deep_copy, recursive_copy, retry_connection_with_exponential_backoff
|
| 68 |
|
| 69 |
logger = get_logger()
|
| 70 |
settings = get_settings()
|
| 71 |
|
| 72 |
warnings.filterwarnings("ignore", category=DegenerateDataWarning)
|
| 73 |
|
| 74 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 75 |
def hf_evaluate_load(path: str, *args, **kwargs):
|
| 76 |
if settings.hf_offline_metrics_path is not None:
|
| 77 |
path = os.path.join(settings.hf_offline_metrics_path, path)
|
|
|
|
| 80 |
*args,
|
| 81 |
**kwargs,
|
| 82 |
experiment_id=str(uuid.uuid4()),
|
|
|
|
|
|
|
|
|
|
| 83 |
verification_mode="no_checks",
|
| 84 |
trust_remote_code=settings.allow_unverified_code,
|
| 85 |
download_mode=(
|
|
|
|
| 123 |
warnings.simplefilter("ignore", category=RuntimeWarning)
|
| 124 |
return np.nanmax(x)
|
| 125 |
|
| 126 |
+
|
| 127 |
def nan_std(x):
|
| 128 |
with warnings.catch_warnings():
|
| 129 |
warnings.simplefilter("ignore", category=RuntimeWarning)
|
|
|
|
| 395 |
result = np.array([scores[m] for m in self.score_names])
|
| 396 |
self._history.append(result)
|
| 397 |
return result
|
| 398 |
+
|
| 399 |
def mean(self, idx):
|
| 400 |
return nan_mean([result[idx] for result in self._history])
|
| 401 |
|
| 402 |
def std(self, idx):
|
| 403 |
return nan_std([result[idx] for result in self._history])
|
| 404 |
|
| 405 |
+
|
| 406 |
class ConfidenceIntervalMixin(Artifact):
|
| 407 |
n_resamples: int = 1000
|
| 408 |
confidence_level: float = 0.95
|
|
|
|
| 412 |
def _sample_to_scores(self, sample: List[Any]) -> Dict[str, Any]:
|
| 413 |
pass
|
| 414 |
|
|
|
|
| 415 |
def bootstrap(self, data: List[Any], score_names: List[str]):
|
| 416 |
if self.ci_score_names is not None:
|
| 417 |
score_names = self.ci_score_names
|
| 418 |
|
|
|
|
| 419 |
statistic = Statistic(data, score_names, self._sample_to_scores)
|
| 420 |
with warnings.catch_warnings():
|
| 421 |
+
warnings.filterwarnings( # Ignore error the arises when all sample scores are identical
|
| 422 |
"ignore",
|
| 423 |
message="invalid value encountered in divide",
|
| 424 |
+
category=RuntimeWarning,
|
| 425 |
)
|
| 426 |
|
| 427 |
intervals = bootstrap(
|
|
|
|
| 435 |
method="BCa",
|
| 436 |
).confidence_interval
|
| 437 |
|
|
|
|
| 438 |
result = {}
|
| 439 |
for i, metric in enumerate(score_names):
|
| 440 |
high = intervals.high[i]
|
| 441 |
low = intervals.low[i]
|
| 442 |
if np.isnan(high) and np.isnan(low):
|
| 443 |
+
if (
|
| 444 |
+
statistic.std(i) == 0
|
| 445 |
+
): # When sample scores are identical "BCa" will fail (due to division by std 0)
|
| 446 |
+
high = low = statistic.mean(
|
| 447 |
+
i
|
| 448 |
+
) # In this case we will use the mean (as there is no variance)
|
| 449 |
result[f"{metric}_ci_low"] = float(low)
|
| 450 |
result[f"{metric}_ci_high"] = float(high)
|
| 451 |
|
|
|
|
| 2807 |
remote_url = "https://raw.githubusercontent.com/czyssrs/FinQA/dfc5b72c01ee17c442d28d5201b82a1f4e95d5af/code/evaluate/evaluate.py"
|
| 2808 |
local_filepath = "/tmp/finqa_eval_script.py"
|
| 2809 |
module_name = "finqa_eval"
|
| 2810 |
+
hash_of_script = "42430b8613082bb4b85d49210284135d" # pragma: allowlist secret
|
| 2811 |
|
| 2812 |
download_finqa_eval_script_file(remote_url, local_filepath, hash_of_script)
|
| 2813 |
self.finqa_module = load_finqa_eval_module_from_file(
|
|
|
|
| 3415 |
|
| 3416 |
class KeyValueExtraction(GlobalMetric):
|
| 3417 |
|
| 3418 |
+
prediction_type = Dict[str, str]
|
| 3419 |
+
metric: Metric
|
| 3420 |
single_reference_per_prediction = True
|
| 3421 |
main_score = ""
|
| 3422 |
+
|
| 3423 |
def prepare(self):
|
| 3424 |
super().prepare()
|
| 3425 |
self.main_score = f"{self.metric.main_score}_micro"
|
|
|
|
| 3437 |
for reference in references:
|
| 3438 |
all_reference_keys.update(list(reference.keys()))
|
| 3439 |
for key in all_reference_keys:
|
| 3440 |
+
key_statistics[key] = []
|
| 3441 |
|
| 3442 |
+
num_prediction_keys = 0
|
| 3443 |
+
illegal_prediction_keys = 0
|
| 3444 |
for reference, prediction in zip(references, predictions):
|
| 3445 |
for key in all_reference_keys:
|
| 3446 |
+
if key not in reference and key not in prediction:
|
| 3447 |
continue
|
| 3448 |
+
if key in reference and key in prediction:
|
| 3449 |
+
multi_stream = MultiStream.from_iterables(
|
| 3450 |
+
{
|
| 3451 |
+
"test": [
|
| 3452 |
+
{
|
| 3453 |
+
"prediction": prediction[key],
|
| 3454 |
+
"references": [reference[key]],
|
| 3455 |
+
}
|
| 3456 |
+
]
|
| 3457 |
+
}
|
| 3458 |
+
)
|
| 3459 |
output_multi_stream = self.metric(multi_stream)
|
| 3460 |
output_stream = output_multi_stream["test"]
|
| 3461 |
score = next(iter(output_stream))["score"]["global"]["score"]
|
|
|
|
| 3468 |
if key not in all_reference_keys:
|
| 3469 |
illegal_prediction_keys += 1
|
| 3470 |
|
| 3471 |
+
result = {}
|
| 3472 |
|
| 3473 |
average = 0
|
| 3474 |
total = 0
|
|
|
|
| 3484 |
|
| 3485 |
result[f"{self.metric.main_score}_micro"] = weighted_average / total
|
| 3486 |
result[f"{self.metric.main_score}_macro"] = average / len(key_statistics)
|
| 3487 |
+
if num_prediction_keys != 0:
|
| 3488 |
+
result[f"{self.metric.main_score}_legal_keys_in_predictions"] = (
|
| 3489 |
+
1 - 1.0 * illegal_prediction_keys / num_prediction_keys
|
| 3490 |
+
)
|
| 3491 |
else:
|
| 3492 |
result[f"{self.metric.main_score}_legal_keys_in_predictions"] = 0
|
| 3493 |
|
| 3494 |
return result
|
| 3495 |
|
| 3496 |
+
|
| 3497 |
class NER(CustomF1):
|
| 3498 |
"""F1 Metrics that receives as input a list of (Entity,EntityType) pairs."""
|
| 3499 |
|
|
|
|
| 3724 |
|
| 3725 |
_requirements_list: List[str] = ["transformers", "torch"]
|
| 3726 |
|
| 3727 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 3728 |
def prepare(self):
|
| 3729 |
super().prepare()
|
| 3730 |
import torch
|
|
|
|
| 3765 |
|
| 3766 |
_requirements_list: List[str] = ["transformers", "torch", "tqdm"]
|
| 3767 |
|
| 3768 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 3769 |
def prepare(self):
|
| 3770 |
super().prepare()
|
| 3771 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
| 3955 |
|
| 3956 |
return result
|
| 3957 |
|
| 3958 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 3959 |
def prepare(self):
|
| 3960 |
super().prepare()
|
| 3961 |
from transformers import pipeline
|
|
|
|
| 4135 |
|
| 4136 |
_requirements_list: List[str] = ["transformers", "torch"]
|
| 4137 |
|
| 4138 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 4139 |
def compute(
|
| 4140 |
self,
|
| 4141 |
references: List[List[Any]],
|
|
|
|
| 4409 |
|
| 4410 |
_requirements_list: List[str] = ["transformers", "torch"]
|
| 4411 |
|
| 4412 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 4413 |
def prepare(self):
|
| 4414 |
super().prepare()
|
| 4415 |
import torch
|
|
|
|
| 6067 |
|
| 6068 |
_requirements_list: List[str] = ["torch", "transformers"]
|
| 6069 |
|
| 6070 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 6071 |
def prepare(self):
|
| 6072 |
from transformers import AutoTokenizer
|
| 6073 |
|
|
|
|
| 6133 |
)
|
| 6134 |
messages = self.process_input_fields(task_data)
|
| 6135 |
prompt = self.get_prompt(messages)
|
| 6136 |
+
data_classification_policy = task_data.get("metadata", {}).get(
|
| 6137 |
+
"data_classification_policy"
|
| 6138 |
+
)
|
| 6139 |
|
| 6140 |
+
result = self.inference_engine.infer_log_probs(
|
| 6141 |
+
[
|
| 6142 |
+
{
|
| 6143 |
+
"source": prompt,
|
| 6144 |
+
"data_classification_policy": data_classification_policy,
|
| 6145 |
+
}
|
| 6146 |
+
]
|
| 6147 |
+
)
|
| 6148 |
|
| 6149 |
generated_tokens_list = result[0]
|
| 6150 |
label, prob_of_risk = self.parse_output(generated_tokens_list)
|
|
|
|
| 6397 |
df1.fillna(0, inplace=True)
|
| 6398 |
df2.fillna(0, inplace=True)
|
| 6399 |
|
| 6400 |
+
# Compare row counts first for a quick check
|
| 6401 |
if df1.shape != df2.shape:
|
| 6402 |
return False
|
| 6403 |
|
| 6404 |
+
# Convert DataFrames to numpy arrays of strings to handle mixed types
|
| 6405 |
+
df1_array = df1.values.astype(str)
|
| 6406 |
+
df2_array = df2.values.astype(str)
|
| 6407 |
+
|
| 6408 |
+
# Sort each row's elements (column order independence)
|
| 6409 |
+
df1_sorted_rows = np.array([np.sort(row) for row in df1_array])
|
| 6410 |
+
df2_sorted_rows = np.array([np.sort(row) for row in df2_array])
|
| 6411 |
|
| 6412 |
+
# Compare the sorted rows in order
|
| 6413 |
+
return np.array_equal(df1_sorted_rows, df2_sorted_rows)
|
| 6414 |
|
| 6415 |
@staticmethod
|
| 6416 |
def compare_dfs_ignore_colnames_unordered_rows(df1, df2):
|
|
|
|
| 6424 |
True if the DataFrames have the same content (ignoring column names and row order),
|
| 6425 |
False otherwise.
|
| 6426 |
"""
|
| 6427 |
+
# Compare shapes early on
|
| 6428 |
+
if df1.shape != df2.shape:
|
| 6429 |
+
return False
|
| 6430 |
+
|
| 6431 |
+
# Convert DataFrames to numpy arrays of strings (to handle mixed data types)
|
| 6432 |
+
df1_array = df1.values.astype(str)
|
| 6433 |
+
df2_array = df2.values.astype(str)
|
| 6434 |
+
|
| 6435 |
+
# Sort columns first, then sort rows
|
| 6436 |
+
df1_sorted = np.sort(np.sort(df1_array, axis=1), axis=0)
|
| 6437 |
+
df2_sorted = np.sort(np.sort(df2_array, axis=1), axis=0)
|
| 6438 |
+
|
| 6439 |
+
# Compare the sorted arrays
|
| 6440 |
+
return np.array_equal(df1_sorted, df2_sorted)
|
| 6441 |
|
| 6442 |
@staticmethod
|
| 6443 |
+
def compare_dfs_ignore_colnames_subset(df1, df2, ignore_row_order=True):
|
| 6444 |
+
"""Checks if the values of either DataFrame are a subset of the values in the other DataFrame.
|
| 6445 |
+
|
| 6446 |
+
Comparison is column order independent, and could optionally be row order independent.
|
| 6447 |
+
We interpret "subset" as follows:
|
| 6448 |
+
- For each row in df1, there must be a matching (or superset) row in df2, i.e. the set of values
|
| 6449 |
+
in the df1 row is a subset of the set of values in that df2 row. Then do the same check in reverse.
|
| 6450 |
+
- If either condition (df1 is subset of df2 OR df2 is subset of df1) is satisfied, return True.
|
| 6451 |
+
|
| 6452 |
+
We treat an empty dataframe as a subset of nothing, while in theory is a subset of any dataframe.
|
| 6453 |
|
| 6454 |
Args:
|
| 6455 |
+
df1 (pd.DataFrame): Pandas DataFrame 1 to compare.
|
| 6456 |
+
df2 (pd.DataFrame): Pandas DataFrame 2 to compare.
|
| 6457 |
+
ignore_row_order (bool): If True, row order doesn't matter; if False, row order is respected.
|
| 6458 |
|
| 6459 |
Returns:
|
| 6460 |
+
bool: True if df1 is a subset of df2 or vice versa, based on the specified row-order condition.
|
|
|
|
| 6461 |
"""
|
| 6462 |
+
df1_array = df1.values.astype(str)
|
| 6463 |
+
df2_array = df2.values.astype(str)
|
| 6464 |
+
|
| 6465 |
+
df1_sorted_rows = [np.sort(row) for row in df1_array]
|
| 6466 |
+
df2_sorted_rows = [np.sort(row) for row in df2_array]
|
| 6467 |
+
|
| 6468 |
+
def row_is_subset(r_small, r_big):
|
| 6469 |
+
"""Check if all elements of r_small are in r_big."""
|
| 6470 |
+
return set(r_small).issubset(set(r_big))
|
| 6471 |
+
|
| 6472 |
+
def df_is_subset_of_another(rows_small, rows_big, respect_order):
|
| 6473 |
+
"""Check if the rows_small is subset of rows_big under the given order condition."""
|
| 6474 |
+
if not rows_small:
|
| 6475 |
+
return False # DataFrame needs to be non-empty
|
| 6476 |
+
|
| 6477 |
+
# If row order matters:
|
| 6478 |
+
if respect_order:
|
| 6479 |
+
i, j = 0, 0
|
| 6480 |
+
while i < len(rows_small) and j < len(rows_big):
|
| 6481 |
+
if row_is_subset(rows_small[i], rows_big[j]):
|
| 6482 |
+
i += 1
|
| 6483 |
+
j += 1
|
| 6484 |
+
return i == len(rows_small)
|
| 6485 |
+
# Row order doesn't matter:
|
| 6486 |
+
matched_indices = set()
|
| 6487 |
+
for r_small in rows_small:
|
| 6488 |
+
found_match = False
|
| 6489 |
+
for idx, r_big in enumerate(rows_big):
|
| 6490 |
+
if idx not in matched_indices and row_is_subset(r_small, r_big):
|
| 6491 |
+
found_match = True
|
| 6492 |
+
matched_indices.add(idx)
|
| 6493 |
+
break
|
| 6494 |
+
if not found_match:
|
| 6495 |
+
return False
|
| 6496 |
+
return True
|
| 6497 |
+
|
| 6498 |
+
df1_sub_df2 = df_is_subset_of_another(
|
| 6499 |
+
df1_sorted_rows, df2_sorted_rows, not ignore_row_order
|
| 6500 |
+
)
|
| 6501 |
+
df2_sub_df1 = df_is_subset_of_another(
|
| 6502 |
+
df2_sorted_rows, df1_sorted_rows, not ignore_row_order
|
| 6503 |
+
)
|
| 6504 |
|
| 6505 |
+
return df1_sub_df2 or df2_sub_df1
|
| 6506 |
|
| 6507 |
def get_sql_execution_results(
|
| 6508 |
self, predicted_sql: str, gold_sql: str, connector
|
|
|
|
| 6518 |
a 12-tuple of
|
| 6519 |
1. execution_result: if df responses match
|
| 6520 |
2. non_empty_execution_result: if dfs are non-empty and match
|
| 6521 |
+
3. subset_non_empty_execution_result: if non-empty dfs and one is a subset of the other
|
| 6522 |
4. non_empty_gold_df: if gt df is non-empty
|
| 6523 |
5. gold_sql_runtime: ground truth query runtime
|
| 6524 |
6. predicted_sql_runtime: predicted query runtime
|
|
|
|
| 6641 |
pred_res = pred_res["results"]
|
| 6642 |
predicted_df = pd.DataFrame(pred_res)
|
| 6643 |
|
| 6644 |
+
subset_non_empty_execution_result = 0
|
| 6645 |
+
non_empty_execution_result = 0
|
| 6646 |
if "ORDER BY" in gold_sql.upper():
|
| 6647 |
execution_result = (
|
| 6648 |
1
|
| 6649 |
if self.compare_dfs_ignore_colnames_ordered_rows(predicted_df, gold_df)
|
| 6650 |
else 0
|
| 6651 |
)
|
| 6652 |
+
if non_empty_gold_df:
|
| 6653 |
+
if execution_result == 1:
|
| 6654 |
+
non_empty_execution_result = 1
|
| 6655 |
+
if self.compare_dfs_ignore_colnames_subset(
|
| 6656 |
+
gold_df, predicted_df, ignore_row_order=False
|
| 6657 |
+
):
|
| 6658 |
+
subset_non_empty_execution_result = 1
|
| 6659 |
else:
|
| 6660 |
execution_result = (
|
| 6661 |
1
|
|
|
|
| 6664 |
)
|
| 6665 |
else 0
|
| 6666 |
)
|
| 6667 |
+
if non_empty_gold_df:
|
| 6668 |
+
if execution_result == 1:
|
| 6669 |
+
non_empty_execution_result = 1
|
| 6670 |
+
if self.compare_dfs_ignore_colnames_subset(
|
| 6671 |
+
gold_df, predicted_df, ignore_row_order=True
|
| 6672 |
+
):
|
| 6673 |
+
subset_non_empty_execution_result = 1
|
|
|
|
| 6674 |
|
| 6675 |
return (
|
| 6676 |
execution_result,
|
|
|
|
| 6752 |
"sqlglot_optimized_equivalence",
|
| 6753 |
"sqlparse_equivalence",
|
| 6754 |
"sql_exact_match",
|
| 6755 |
+
"sql_syntactic_equivalence",
|
| 6756 |
]
|
| 6757 |
}
|
| 6758 |
main_score = "sqlglot_equivalence"
|
|
|
|
| 6763 |
"sqlglot_optimized_equivalence",
|
| 6764 |
"sqlparse_equivalence",
|
| 6765 |
"sql_exact_match",
|
| 6766 |
+
"sql_syntactic_equivalence",
|
| 6767 |
]
|
| 6768 |
|
| 6769 |
prediction_type = "Any" # string representation is compared
|
|
|
|
| 6811 |
),
|
| 6812 |
"sql_exact_match": float(sql_exact_match(predicted_sql, gold_sql)),
|
| 6813 |
}
|
| 6814 |
+
result["sql_syntactic_equivalence"] = float(
|
| 6815 |
+
any(
|
| 6816 |
+
result[key]
|
| 6817 |
+
for key in [
|
| 6818 |
+
"sqlglot_equivalence",
|
| 6819 |
+
"sqlglot_optimized_equivalence",
|
| 6820 |
+
"sqlparse_equivalence",
|
| 6821 |
+
"sql_exact_match",
|
| 6822 |
+
]
|
| 6823 |
+
)
|
| 6824 |
+
)
|
| 6825 |
logger.debug(f"SQL Non Execution Accuracy Result: {result}")
|
| 6826 |
result["score"] = result[self.main_score]
|
| 6827 |
result["score_name"] = self.main_score
|
processors.py
CHANGED
|
@@ -292,6 +292,13 @@ class ExtractMtBenchRatingJudgment(FieldOperator):
|
|
| 292 |
except:
|
| 293 |
return 0.0
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
class ExtractMtBenchLabelJudgment(FieldOperator):
|
| 297 |
def process_value(self, text: Any) -> Any:
|
|
|
|
| 292 |
except:
|
| 293 |
return 0.0
|
| 294 |
|
| 295 |
+
class ExtractHarmRatingJudgement(FieldOperator):
|
| 296 |
+
def process_value(self, text: Any) -> Any:
|
| 297 |
+
match = re.search(r"\[\[([\d]+\.?[\d]*)\]\]", text)
|
| 298 |
+
try:
|
| 299 |
+
return float(match.group(1))*0.25 - 0.25
|
| 300 |
+
except:
|
| 301 |
+
return np.NaN
|
| 302 |
|
| 303 |
class ExtractMtBenchLabelJudgment(FieldOperator):
|
| 304 |
def process_value(self, text: Any) -> Any:
|
settings_utils.py
CHANGED
|
@@ -160,6 +160,7 @@ if Settings.is_uninitilized():
|
|
| 160 |
settings.hf_offline_metrics_path = None
|
| 161 |
settings.hf_offline_models_path = None
|
| 162 |
settings.inference_engine_cache_path = "./inference_engine_cache/"
|
|
|
|
| 163 |
|
| 164 |
if Constants.is_uninitilized():
|
| 165 |
constants = Constants()
|
|
|
|
| 160 |
settings.hf_offline_metrics_path = None
|
| 161 |
settings.hf_offline_models_path = None
|
| 162 |
settings.inference_engine_cache_path = "./inference_engine_cache/"
|
| 163 |
+
settings.max_connection_retries = 3
|
| 164 |
|
| 165 |
if Constants.is_uninitilized():
|
| 166 |
constants = Constants()
|
sql_utils.py
CHANGED
|
@@ -275,8 +275,15 @@ class Cache:
|
|
| 275 |
|
| 276 |
logger.info(f"Cache miss for key: {key}. Computing value...")
|
| 277 |
result = compute_fn()
|
| 278 |
-
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
return result
|
| 281 |
|
| 282 |
async def async_get_or_set(self, key, compute_fn, no_cache=False, refresh=False):
|
|
@@ -494,7 +501,7 @@ class RemoteDatabaseConnector(DatabaseConnector):
|
|
| 494 |
|
| 495 |
schema_text = ""
|
| 496 |
for table in schema["tables"]:
|
| 497 |
-
schema_text += f"Table: {table['table_name']} has columns: {[col['column_name'] for col in table['columns']]}\n"
|
| 498 |
|
| 499 |
return schema_text
|
| 500 |
|
|
|
|
| 275 |
|
| 276 |
logger.info(f"Cache miss for key: {key}. Computing value...")
|
| 277 |
result = compute_fn()
|
| 278 |
+
|
| 279 |
+
if result and not (
|
| 280 |
+
isinstance(result, tuple) and len(result) == 2 and result[0] is None
|
| 281 |
+
):
|
| 282 |
+
self.cache[key] = result
|
| 283 |
+
logger.info(f"Stored result in cache for key: {key}")
|
| 284 |
+
else:
|
| 285 |
+
logger.info(f"None result. Bypassing caching for key: {key}")
|
| 286 |
+
|
| 287 |
return result
|
| 288 |
|
| 289 |
async def async_get_or_set(self, key, compute_fn, no_cache=False, refresh=False):
|
|
|
|
| 501 |
|
| 502 |
schema_text = ""
|
| 503 |
for table in schema["tables"]:
|
| 504 |
+
schema_text += f"Table: {table['name'] if 'name' in table else table['table_name']} has columns: {[col['name'] if 'name' in col else col['column_name'] for col in table['columns']]}\n"
|
| 505 |
|
| 506 |
return schema_text
|
| 507 |
|
standard.py
CHANGED
|
@@ -503,7 +503,7 @@ class DatasetRecipe(SourceSequentialOperator):
|
|
| 503 |
loader = self.card.loader
|
| 504 |
if self.loader_limit:
|
| 505 |
loader.loader_limit = self.loader_limit
|
| 506 |
-
logger.info(f"Loader line limit was set to {self.loader_limit}")
|
| 507 |
self.loading.steps.append(loader)
|
| 508 |
|
| 509 |
# This is required in case loader_limit is not enforced by the loader
|
|
|
|
| 503 |
loader = self.card.loader
|
| 504 |
if self.loader_limit:
|
| 505 |
loader.loader_limit = self.loader_limit
|
| 506 |
+
# logger.info(f"Loader line limit was set to {self.loader_limit}")
|
| 507 |
self.loading.steps.append(loader)
|
| 508 |
|
| 509 |
# This is required in case loader_limit is not enforced by the loader
|
string_operators.py
CHANGED
|
@@ -9,6 +9,7 @@ from typing import (
|
|
| 9 |
|
| 10 |
from .operators import FieldOperator, InstanceOperator
|
| 11 |
from .settings_utils import get_settings
|
|
|
|
| 12 |
|
| 13 |
settings = get_settings()
|
| 14 |
|
|
@@ -50,6 +51,7 @@ class TokensSlice(FieldOperator):
|
|
| 50 |
|
| 51 |
_requirements_list = ["transformers"]
|
| 52 |
|
|
|
|
| 53 |
def prepare(self):
|
| 54 |
super().prepare()
|
| 55 |
from transformers import AutoTokenizer
|
|
|
|
| 9 |
|
| 10 |
from .operators import FieldOperator, InstanceOperator
|
| 11 |
from .settings_utils import get_settings
|
| 12 |
+
from .utils import retry_connection_with_exponential_backoff
|
| 13 |
|
| 14 |
settings = get_settings()
|
| 15 |
|
|
|
|
| 51 |
|
| 52 |
_requirements_list = ["transformers"]
|
| 53 |
|
| 54 |
+
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
| 55 |
def prepare(self):
|
| 56 |
super().prepare()
|
| 57 |
from transformers import AutoTokenizer
|
utils.py
CHANGED
|
@@ -1,15 +1,92 @@
|
|
| 1 |
import copy
|
|
|
|
| 2 |
import importlib.util
|
| 3 |
import json
|
|
|
|
| 4 |
import os
|
|
|
|
| 5 |
import re
|
| 6 |
import threading
|
|
|
|
| 7 |
from collections import OrderedDict
|
| 8 |
from functools import lru_cache
|
| 9 |
from typing import Any, Dict
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from .text_utils import is_made_of_sub_strings
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
class Singleton(type):
|
| 15 |
_instances = {}
|
|
|
|
| 1 |
import copy
|
| 2 |
+
import functools
|
| 3 |
import importlib.util
|
| 4 |
import json
|
| 5 |
+
import logging
|
| 6 |
import os
|
| 7 |
+
import random
|
| 8 |
import re
|
| 9 |
import threading
|
| 10 |
+
import time
|
| 11 |
from collections import OrderedDict
|
| 12 |
from functools import lru_cache
|
| 13 |
from typing import Any, Dict
|
| 14 |
+
from urllib.error import HTTPError as UrllibHTTPError
|
| 15 |
|
| 16 |
+
from requests.exceptions import ConnectionError, HTTPError
|
| 17 |
+
from requests.exceptions import Timeout as TimeoutError
|
| 18 |
+
|
| 19 |
+
from .settings_utils import get_settings
|
| 20 |
from .text_utils import is_made_of_sub_strings
|
| 21 |
|
| 22 |
+
settings = get_settings()
|
| 23 |
+
|
| 24 |
+
def retry_connection_with_exponential_backoff(max_retries=None,
|
| 25 |
+
retry_exceptions=(ConnectionError, TimeoutError, HTTPError, FileNotFoundError, UrllibHTTPError),
|
| 26 |
+
backoff_factor=1):
|
| 27 |
+
"""Decorator that implements retry with exponential backoff for network operations.
|
| 28 |
+
|
| 29 |
+
Also handles errors that were triggered by the specified retry exceptions,
|
| 30 |
+
whether they're direct causes or part of the exception context.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
max_retries: Maximum number of retry attempts (falls back to settings if None)
|
| 34 |
+
retry_exceptions: Tuple of exceptions that should trigger a retry
|
| 35 |
+
backoff_factor: Base delay factor in seconds for backoff calculation
|
| 36 |
+
|
| 37 |
+
Returns:
|
| 38 |
+
The decorated function with retry logic
|
| 39 |
+
"""
|
| 40 |
+
def decorator(func):
|
| 41 |
+
@functools.wraps(func)
|
| 42 |
+
def wrapper(*args, **kwargs):
|
| 43 |
+
# Get max_retries from settings if not provided
|
| 44 |
+
retries = max_retries if max_retries is not None else settings.max_connection_retries
|
| 45 |
+
|
| 46 |
+
for attempt in range(retries):
|
| 47 |
+
try:
|
| 48 |
+
return func(*args, **kwargs)
|
| 49 |
+
except Exception as e:
|
| 50 |
+
# Check if this exception or any of its causes match the retry exceptions
|
| 51 |
+
should_retry = False
|
| 52 |
+
current_exc = e
|
| 53 |
+
|
| 54 |
+
# Check the exception chain for both __cause__ (explicit) and __context__ (implicit)
|
| 55 |
+
visited_exceptions = set() # To prevent infinite loops in rare cyclic exception references
|
| 56 |
+
|
| 57 |
+
while current_exc is not None and id(current_exc) not in visited_exceptions:
|
| 58 |
+
visited_exceptions.add(id(current_exc))
|
| 59 |
+
|
| 60 |
+
if isinstance(current_exc, retry_exceptions):
|
| 61 |
+
should_retry = True
|
| 62 |
+
break
|
| 63 |
+
|
| 64 |
+
# First check __cause__ (from "raise X from Y")
|
| 65 |
+
if current_exc.__cause__ is not None:
|
| 66 |
+
current_exc = current_exc.__cause__
|
| 67 |
+
# Then check __context__ (from "try: ... except: raise X")
|
| 68 |
+
elif current_exc.__context__ is not None:
|
| 69 |
+
current_exc = current_exc.__context__
|
| 70 |
+
else:
|
| 71 |
+
# No more causes in the chain
|
| 72 |
+
break
|
| 73 |
+
|
| 74 |
+
if not should_retry:
|
| 75 |
+
# Not a retry exception or caused by a retry exception, so re-raise
|
| 76 |
+
raise
|
| 77 |
+
|
| 78 |
+
if attempt >= retries - 1: # Last attempt
|
| 79 |
+
raise # Re-raise the last exception
|
| 80 |
+
|
| 81 |
+
# Calculate exponential backoff with jitter
|
| 82 |
+
wait_time = backoff_factor * (2 ** attempt) + random.uniform(0, 1)
|
| 83 |
+
logging.warning(f"{func.__name__} failed (attempt {attempt+1}/{retries}). "
|
| 84 |
+
f"Retrying in {wait_time:.2f}s. Error: {e!s}")
|
| 85 |
+
time.sleep(wait_time)
|
| 86 |
+
|
| 87 |
+
raise ValueError("there was a problem") from None
|
| 88 |
+
return wrapper
|
| 89 |
+
return decorator
|
| 90 |
|
| 91 |
class Singleton(type):
|
| 92 |
_instances = {}
|
version.py
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
version = "1.
|
|
|
|
| 1 |
+
version = "1.22.0"
|