Upload loaders.py with huggingface_hub
Browse files- loaders.py +87 -18
loaders.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
from tempfile import TemporaryDirectory
|
| 3 |
from typing import Dict, Mapping, Optional, Sequence, Union
|
|
@@ -11,7 +13,7 @@ from .stream import MultiStream, Stream
|
|
| 11 |
|
| 12 |
try:
|
| 13 |
import ibm_boto3
|
| 14 |
-
from ibm_botocore.client import ClientError
|
| 15 |
|
| 16 |
ibm_boto3_available = True
|
| 17 |
except ImportError:
|
|
@@ -19,6 +21,13 @@ except ImportError:
|
|
| 19 |
|
| 20 |
|
| 21 |
class Loader(SourceOperator):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
pass
|
| 23 |
|
| 24 |
|
|
@@ -26,14 +35,41 @@ class LoadHF(Loader):
|
|
| 26 |
path: str
|
| 27 |
name: Optional[str] = None
|
| 28 |
data_dir: Optional[str] = None
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
| 30 |
streaming: bool = True
|
| 31 |
cached = False
|
| 32 |
|
| 33 |
def process(self):
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
return MultiStream.from_iterables(dataset)
|
| 39 |
|
|
@@ -44,12 +80,15 @@ class LoadCSV(Loader):
|
|
| 44 |
|
| 45 |
def load_csv(self, file):
|
| 46 |
for chunk in pd.read_csv(file, chunksize=self.chunksize):
|
| 47 |
-
for
|
| 48 |
yield row.to_dict()
|
| 49 |
|
| 50 |
def process(self):
|
| 51 |
return MultiStream(
|
| 52 |
-
{
|
|
|
|
|
|
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
|
|
@@ -58,16 +97,33 @@ class LoadFromIBMCloud(Loader):
|
|
| 58 |
aws_access_key_id_env: str
|
| 59 |
aws_secret_access_key_env: str
|
| 60 |
bucket_name: str
|
| 61 |
-
data_dir: str
|
| 62 |
data_files: Sequence[str]
|
| 63 |
|
| 64 |
def _download_from_cos(self, cos, bucket_name, item_name, local_file):
|
| 65 |
-
|
| 66 |
try:
|
| 67 |
response = cos.Object(bucket_name, item_name).get()
|
| 68 |
size = response["ContentLength"]
|
|
|
|
| 69 |
except Exception as e:
|
| 70 |
-
raise Exception(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
progress_bar = tqdm(total=size, unit="iB", unit_scale=True)
|
| 73 |
|
|
@@ -75,10 +131,14 @@ class LoadFromIBMCloud(Loader):
|
|
| 75 |
progress_bar.update(chunk)
|
| 76 |
|
| 77 |
try:
|
| 78 |
-
cos.Bucket(bucket_name).download_file(
|
| 79 |
-
|
|
|
|
|
|
|
| 80 |
except Exception as e:
|
| 81 |
-
raise Exception(
|
|
|
|
|
|
|
| 82 |
|
| 83 |
def prepare(self):
|
| 84 |
super().prepare()
|
|
@@ -88,11 +148,13 @@ class LoadFromIBMCloud(Loader):
|
|
| 88 |
|
| 89 |
def verify(self):
|
| 90 |
super().verify()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
assert (
|
| 92 |
-
|
| 93 |
-
), f"Please
|
| 94 |
-
assert self.endpoint_url is not None, f"Please set the {self.endpoint_url_env} environmental variable"
|
| 95 |
-
assert self.aws_access_key_id is not None, f"Please set {self.aws_access_key_id_env} environmental variable"
|
| 96 |
assert (
|
| 97 |
self.aws_secret_access_key is not None
|
| 98 |
), f"Please set {self.aws_secret_access_key_env} environmental variable"
|
|
@@ -107,8 +169,15 @@ class LoadFromIBMCloud(Loader):
|
|
| 107 |
|
| 108 |
with TemporaryDirectory() as temp_directory:
|
| 109 |
for data_file in self.data_files:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
self._download_from_cos(
|
| 111 |
-
cos, self.bucket_name,
|
| 112 |
)
|
| 113 |
dataset = hf_load_dataset(temp_directory, streaming=False)
|
| 114 |
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
import logging
|
| 3 |
import os
|
| 4 |
from tempfile import TemporaryDirectory
|
| 5 |
from typing import Dict, Mapping, Optional, Sequence, Union
|
|
|
|
| 13 |
|
| 14 |
try:
|
| 15 |
import ibm_boto3
|
| 16 |
+
# from ibm_botocore.client import ClientError
|
| 17 |
|
| 18 |
ibm_boto3_available = True
|
| 19 |
except ImportError:
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
class Loader(SourceOperator):
|
| 24 |
+
# The loader_limit an optional parameter used to control the maximum number of instances to load from the the source.
|
| 25 |
+
# It is usually provided to the loader via the recipe (see standard.py)
|
| 26 |
+
# The loader can use this value to limit the amount of data downloaded from the source
|
| 27 |
+
# to reduce loading time. However, this may not always be possible, so the
|
| 28 |
+
# loader may ingore this. In any case, the recipe, will limit the number of instances in the returned
|
| 29 |
+
# stream after, after load is complete.
|
| 30 |
+
loader_limit: int = None
|
| 31 |
pass
|
| 32 |
|
| 33 |
|
|
|
|
| 35 |
path: str
|
| 36 |
name: Optional[str] = None
|
| 37 |
data_dir: Optional[str] = None
|
| 38 |
+
split: Optional[str] = None
|
| 39 |
+
data_files: Optional[
|
| 40 |
+
Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
|
| 41 |
+
] = None
|
| 42 |
streaming: bool = True
|
| 43 |
cached = False
|
| 44 |
|
| 45 |
def process(self):
|
| 46 |
+
try:
|
| 47 |
+
dataset = hf_load_dataset(
|
| 48 |
+
self.path,
|
| 49 |
+
name=self.name,
|
| 50 |
+
data_dir=self.data_dir,
|
| 51 |
+
data_files=self.data_files,
|
| 52 |
+
streaming=self.streaming,
|
| 53 |
+
split=self.split,
|
| 54 |
+
)
|
| 55 |
+
if self.split is not None:
|
| 56 |
+
dataset = {self.split: dataset}
|
| 57 |
+
except (
|
| 58 |
+
NotImplementedError
|
| 59 |
+
): # streaming is not supported for zipped files so we load without streaming
|
| 60 |
+
dataset = hf_load_dataset(
|
| 61 |
+
self.path,
|
| 62 |
+
name=self.name,
|
| 63 |
+
data_dir=self.data_dir,
|
| 64 |
+
data_files=self.data_files,
|
| 65 |
+
streaming=False,
|
| 66 |
+
split=self.split,
|
| 67 |
+
)
|
| 68 |
+
if self.split is None:
|
| 69 |
+
for split in dataset.keys():
|
| 70 |
+
dataset[split] = dataset[split].to_iterable_dataset()
|
| 71 |
+
else:
|
| 72 |
+
dataset = {self.split: dataset}
|
| 73 |
|
| 74 |
return MultiStream.from_iterables(dataset)
|
| 75 |
|
|
|
|
| 80 |
|
| 81 |
def load_csv(self, file):
|
| 82 |
for chunk in pd.read_csv(file, chunksize=self.chunksize):
|
| 83 |
+
for _index, row in chunk.iterrows():
|
| 84 |
yield row.to_dict()
|
| 85 |
|
| 86 |
def process(self):
|
| 87 |
return MultiStream(
|
| 88 |
+
{
|
| 89 |
+
name: Stream(generator=self.load_csv, gen_kwargs={"file": file})
|
| 90 |
+
for name, file in self.files.items()
|
| 91 |
+
}
|
| 92 |
)
|
| 93 |
|
| 94 |
|
|
|
|
| 97 |
aws_access_key_id_env: str
|
| 98 |
aws_secret_access_key_env: str
|
| 99 |
bucket_name: str
|
| 100 |
+
data_dir: str = None
|
| 101 |
data_files: Sequence[str]
|
| 102 |
|
| 103 |
def _download_from_cos(self, cos, bucket_name, item_name, local_file):
|
| 104 |
+
logging.info(f"Downloading {item_name} from {bucket_name} COS")
|
| 105 |
try:
|
| 106 |
response = cos.Object(bucket_name, item_name).get()
|
| 107 |
size = response["ContentLength"]
|
| 108 |
+
body = response["Body"]
|
| 109 |
except Exception as e:
|
| 110 |
+
raise Exception(
|
| 111 |
+
f"Unabled to access {item_name} in {bucket_name} in COS", e
|
| 112 |
+
) from e
|
| 113 |
+
|
| 114 |
+
if self.loader_limit is not None:
|
| 115 |
+
if item_name.endswith(".jsonl"):
|
| 116 |
+
first_lines = list(
|
| 117 |
+
itertools.islice(body.iter_lines(), self.loader_limit)
|
| 118 |
+
)
|
| 119 |
+
with open(local_file, "wb") as downloaded_file:
|
| 120 |
+
for line in first_lines:
|
| 121 |
+
downloaded_file.write(line)
|
| 122 |
+
downloaded_file.write(b"\n")
|
| 123 |
+
logging.info(
|
| 124 |
+
f"\nDownload successful limited to {self.loader_limit} lines"
|
| 125 |
+
)
|
| 126 |
+
return
|
| 127 |
|
| 128 |
progress_bar = tqdm(total=size, unit="iB", unit_scale=True)
|
| 129 |
|
|
|
|
| 131 |
progress_bar.update(chunk)
|
| 132 |
|
| 133 |
try:
|
| 134 |
+
cos.Bucket(bucket_name).download_file(
|
| 135 |
+
item_name, local_file, Callback=upload_progress
|
| 136 |
+
)
|
| 137 |
+
logging.info("\nDownload Successful")
|
| 138 |
except Exception as e:
|
| 139 |
+
raise Exception(
|
| 140 |
+
f"Unabled to download {item_name} in {bucket_name}", e
|
| 141 |
+
) from e
|
| 142 |
|
| 143 |
def prepare(self):
|
| 144 |
super().prepare()
|
|
|
|
| 148 |
|
| 149 |
def verify(self):
|
| 150 |
super().verify()
|
| 151 |
+
assert ibm_boto3_available, "Please install ibm_boto3 in order to use the LoadFromIBMCloud loader (using `pip install ibm-cos-sdk`) "
|
| 152 |
+
assert (
|
| 153 |
+
self.endpoint_url is not None
|
| 154 |
+
), f"Please set the {self.endpoint_url_env} environmental variable"
|
| 155 |
assert (
|
| 156 |
+
self.aws_access_key_id is not None
|
| 157 |
+
), f"Please set {self.aws_access_key_id_env} environmental variable"
|
|
|
|
|
|
|
| 158 |
assert (
|
| 159 |
self.aws_secret_access_key is not None
|
| 160 |
), f"Please set {self.aws_secret_access_key_env} environmental variable"
|
|
|
|
| 169 |
|
| 170 |
with TemporaryDirectory() as temp_directory:
|
| 171 |
for data_file in self.data_files:
|
| 172 |
+
# Build object key based on parameters. Slash character is not
|
| 173 |
+
# allowed to be part of object key in IBM COS.
|
| 174 |
+
object_key = (
|
| 175 |
+
self.data_dir + "/" + data_file
|
| 176 |
+
if self.data_dir is not None
|
| 177 |
+
else data_file
|
| 178 |
+
)
|
| 179 |
self._download_from_cos(
|
| 180 |
+
cos, self.bucket_name, object_key, temp_directory + "/" + data_file
|
| 181 |
)
|
| 182 |
dataset = hf_load_dataset(temp_directory, streaming=False)
|
| 183 |
|