Upload standard.py with huggingface_hub
Browse files- standard.py +81 -17
standard.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
|
|
|
| 1 |
from typing import List
|
| 2 |
|
| 3 |
from .card import TaskCard
|
| 4 |
from .dataclass import InternalField, OptionalField
|
| 5 |
from .formats import ICLFormat
|
| 6 |
from .instructions import Instruction
|
| 7 |
-
from .operator import
|
| 8 |
-
from .operators import StreamRefiner
|
| 9 |
from .recipe import Recipe
|
| 10 |
from .renderers import StandardRenderer
|
| 11 |
from .schema import ToUnitxtGroup
|
|
@@ -13,21 +14,30 @@ from .splitters import Sampler, SeparateSplit, SpreadSplit
|
|
| 13 |
from .templates import Template
|
| 14 |
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
card: TaskCard
|
| 18 |
template: Template = None
|
| 19 |
instruction: Instruction = None
|
| 20 |
format: ICLFormat = ICLFormat()
|
| 21 |
|
|
|
|
|
|
|
| 22 |
max_train_instances: int = None
|
| 23 |
max_validation_instances: int = None
|
| 24 |
max_test_instances: int = None
|
| 25 |
|
| 26 |
-
train_refiner: StreamRefiner = OptionalField(default_factory=
|
| 27 |
-
validation_refiner: StreamRefiner = OptionalField(
|
| 28 |
-
|
| 29 |
-
)
|
| 30 |
-
test_refiner: StreamRefiner = OptionalField(default_factory=lambda: StreamRefiner(apply_to_streams=["test"]))
|
| 31 |
|
| 32 |
demos_pool_size: int = None
|
| 33 |
num_demos: int = 0
|
|
@@ -37,6 +47,8 @@ class BaseRecipe(Recipe, SourceSequntialOperator):
|
|
| 37 |
demos_field: str = "demos"
|
| 38 |
sampler: Sampler = None
|
| 39 |
|
|
|
|
|
|
|
| 40 |
steps: List[StreamingOperator] = InternalField(default_factory=list)
|
| 41 |
|
| 42 |
def verify(self):
|
|
@@ -48,7 +60,31 @@ class BaseRecipe(Recipe, SourceSequntialOperator):
|
|
| 48 |
)
|
| 49 |
if self.demos_pool_size < self.num_demos:
|
| 50 |
raise ValueError(
|
| 51 |
-
f"demos_pool_size must be bigger than num_demos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
)
|
| 53 |
|
| 54 |
def prepare(self):
|
|
@@ -56,14 +92,23 @@ class BaseRecipe(Recipe, SourceSequntialOperator):
|
|
| 56 |
self.card.loader,
|
| 57 |
]
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
if self.card.preprocess_steps is not None:
|
| 60 |
self.steps.extend(self.card.preprocess_steps)
|
| 61 |
|
| 62 |
self.steps.append(self.card.task)
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
if self.demos_pool_size is not None:
|
| 65 |
self.steps.append(
|
| 66 |
-
|
| 67 |
from_split=self.demos_taken_from,
|
| 68 |
to_split_names=[self.demos_pool_name, self.demos_taken_from],
|
| 69 |
to_split_sizes=[int(self.demos_pool_size)],
|
|
@@ -79,7 +124,7 @@ class BaseRecipe(Recipe, SourceSequntialOperator):
|
|
| 79 |
sampler.set_size(self.num_demos)
|
| 80 |
|
| 81 |
self.steps.append(
|
| 82 |
-
|
| 83 |
source_stream=self.demos_pool_name,
|
| 84 |
target_field=self.demos_field,
|
| 85 |
sampler=sampler,
|
|
@@ -87,12 +132,15 @@ class BaseRecipe(Recipe, SourceSequntialOperator):
|
|
| 87 |
)
|
| 88 |
|
| 89 |
self.train_refiner.max_instances = self.max_train_instances
|
|
|
|
| 90 |
self.steps.append(self.train_refiner)
|
| 91 |
|
| 92 |
self.validation_refiner.max_instances = self.max_validation_instances
|
|
|
|
| 93 |
self.steps.append(self.validation_refiner)
|
| 94 |
|
| 95 |
self.test_refiner.max_instances = self.max_test_instances
|
|
|
|
| 96 |
self.steps.append(self.test_refiner)
|
| 97 |
|
| 98 |
render = StandardRenderer(
|
|
@@ -104,6 +152,9 @@ class BaseRecipe(Recipe, SourceSequntialOperator):
|
|
| 104 |
|
| 105 |
self.steps.append(render)
|
| 106 |
|
|
|
|
|
|
|
|
|
|
| 107 |
postprocessors = render.get_postprocessors()
|
| 108 |
|
| 109 |
self.steps.append(
|
|
@@ -122,10 +173,21 @@ class StandardRecipeWithIndexes(BaseRecipe):
|
|
| 122 |
def prepare(self):
|
| 123 |
assert (
|
| 124 |
self.template_card_index is None or self.template is None
|
| 125 |
-
), "Specify either template or template_card_index"
|
|
|
|
|
|
|
|
|
|
| 126 |
if self.template_card_index is not None:
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
assert (
|
| 130 |
self.instruction_card_index is None or self.instruction is None
|
| 131 |
), "Specify either instruction or instruction_card_index"
|
|
@@ -136,9 +198,9 @@ class StandardRecipeWithIndexes(BaseRecipe):
|
|
| 136 |
|
| 137 |
|
| 138 |
class StandardRecipe(StandardRecipeWithIndexes):
|
| 139 |
-
"""
|
| 140 |
-
|
| 141 |
-
This class can be used to prepare a recipe
|
| 142 |
with all necessary steps, refiners and renderers included. It allows to set various
|
| 143 |
parameters and steps in a sequential manner for preparing the recipe.
|
| 144 |
|
|
@@ -146,6 +208,7 @@ class StandardRecipe(StandardRecipeWithIndexes):
|
|
| 146 |
card (TaskCard): TaskCard object associated with the recipe.
|
| 147 |
template (Template, optional): Template object to be used for the recipe.
|
| 148 |
instruction (Instruction, optional): Instruction object to be used for the recipe.
|
|
|
|
| 149 |
format (ICLFormat, optional): ICLFormat object to be used for the recipe.
|
| 150 |
train_refiner (StreamRefiner, optional): Train refiner to be used in the recipe.
|
| 151 |
max_train_instances (int, optional): Maximum training instances for the refiner.
|
|
@@ -160,6 +223,7 @@ class StandardRecipe(StandardRecipeWithIndexes):
|
|
| 160 |
demos_field (str, optional): Field name for demos. Default is "demos".
|
| 161 |
sampler (Sampler, optional): Sampler object to be used in the recipe.
|
| 162 |
steps (List[StreamingOperator], optional): List of StreamingOperator objects to be used in the recipe.
|
|
|
|
| 163 |
instruction_card_index (int, optional): Index of instruction card to be used
|
| 164 |
for preparing the recipe.
|
| 165 |
template_card_index (int, optional): Index of template card to be used for
|
|
|
|
| 1 |
+
import logging
|
| 2 |
from typing import List
|
| 3 |
|
| 4 |
from .card import TaskCard
|
| 5 |
from .dataclass import InternalField, OptionalField
|
| 6 |
from .formats import ICLFormat
|
| 7 |
from .instructions import Instruction
|
| 8 |
+
from .operator import SourceSequentialOperator, StreamingOperator
|
| 9 |
+
from .operators import Augmentor, NullAugmentor, StreamRefiner
|
| 10 |
from .recipe import Recipe
|
| 11 |
from .renderers import StandardRenderer
|
| 12 |
from .schema import ToUnitxtGroup
|
|
|
|
| 14 |
from .templates import Template
|
| 15 |
|
| 16 |
|
| 17 |
+
# Used to give meaningful name to recipe steps
|
| 18 |
+
class CreateDemosPool(SeparateSplit):
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class AddDemosField(SpreadSplit):
|
| 23 |
+
pass
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class BaseRecipe(Recipe, SourceSequentialOperator):
|
| 27 |
card: TaskCard
|
| 28 |
template: Template = None
|
| 29 |
instruction: Instruction = None
|
| 30 |
format: ICLFormat = ICLFormat()
|
| 31 |
|
| 32 |
+
loader_limit: int = None
|
| 33 |
+
|
| 34 |
max_train_instances: int = None
|
| 35 |
max_validation_instances: int = None
|
| 36 |
max_test_instances: int = None
|
| 37 |
|
| 38 |
+
train_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
|
| 39 |
+
validation_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
|
| 40 |
+
test_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
|
|
|
|
|
|
|
| 41 |
|
| 42 |
demos_pool_size: int = None
|
| 43 |
num_demos: int = 0
|
|
|
|
| 47 |
demos_field: str = "demos"
|
| 48 |
sampler: Sampler = None
|
| 49 |
|
| 50 |
+
augmentor: Augmentor = OptionalField(default_factory=NullAugmentor)
|
| 51 |
+
|
| 52 |
steps: List[StreamingOperator] = InternalField(default_factory=list)
|
| 53 |
|
| 54 |
def verify(self):
|
|
|
|
| 60 |
)
|
| 61 |
if self.demos_pool_size < self.num_demos:
|
| 62 |
raise ValueError(
|
| 63 |
+
f"demos_pool_size must be bigger than num_demos ({self.num_demos}), Got demos_pool_size={self.demos_pool_size}"
|
| 64 |
+
)
|
| 65 |
+
if self.loader_limit and self.demos_pool_size > self.loader_limit:
|
| 66 |
+
raise ValueError(
|
| 67 |
+
f"demos_pool_size must be bigger than loader_limit ({self.loader_limit}), Got demos_pool_size={self.demos_pool_size}"
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
if self.loader_limit:
|
| 71 |
+
if self.max_test_instances and self.max_test_instances > self.loader_limit:
|
| 72 |
+
raise ValueError(
|
| 73 |
+
f"max_test_instances must be bigger than loader_limit ({self.loader_limit}), Got max_test_instances={self.max_test_instances}"
|
| 74 |
+
)
|
| 75 |
+
if (
|
| 76 |
+
self.max_validation_instances
|
| 77 |
+
and self.max_validation_instances > self.loader_limit
|
| 78 |
+
):
|
| 79 |
+
raise ValueError(
|
| 80 |
+
f"max_validation_instances must be bigger than loader_limit ({self.loader_limit}), Got max_validation_instances={self.max_validation_instances}"
|
| 81 |
+
)
|
| 82 |
+
if (
|
| 83 |
+
self.max_train_instances
|
| 84 |
+
and self.max_train_instances > self.loader_limit
|
| 85 |
+
):
|
| 86 |
+
raise ValueError(
|
| 87 |
+
f"max_train_instances must be bigger than loader_limit ({self.loader_limit}), Got max_train_instances={self.max_train_instances}"
|
| 88 |
)
|
| 89 |
|
| 90 |
def prepare(self):
|
|
|
|
| 92 |
self.card.loader,
|
| 93 |
]
|
| 94 |
|
| 95 |
+
if self.loader_limit:
|
| 96 |
+
self.card.loader.loader_limit = self.loader_limit
|
| 97 |
+
logging.info(f"Loader line limit was set to {self.loader_limit}")
|
| 98 |
+
self.steps.append(StreamRefiner(max_instances=self.loader_limit))
|
| 99 |
+
|
| 100 |
if self.card.preprocess_steps is not None:
|
| 101 |
self.steps.extend(self.card.preprocess_steps)
|
| 102 |
|
| 103 |
self.steps.append(self.card.task)
|
| 104 |
|
| 105 |
+
if self.augmentor.augment_task_input:
|
| 106 |
+
self.augmentor.set_task_input_fields(self.card.task.augmentable_inputs)
|
| 107 |
+
self.steps.append(self.augmentor)
|
| 108 |
+
|
| 109 |
if self.demos_pool_size is not None:
|
| 110 |
self.steps.append(
|
| 111 |
+
CreateDemosPool(
|
| 112 |
from_split=self.demos_taken_from,
|
| 113 |
to_split_names=[self.demos_pool_name, self.demos_taken_from],
|
| 114 |
to_split_sizes=[int(self.demos_pool_size)],
|
|
|
|
| 124 |
sampler.set_size(self.num_demos)
|
| 125 |
|
| 126 |
self.steps.append(
|
| 127 |
+
AddDemosField(
|
| 128 |
source_stream=self.demos_pool_name,
|
| 129 |
target_field=self.demos_field,
|
| 130 |
sampler=sampler,
|
|
|
|
| 132 |
)
|
| 133 |
|
| 134 |
self.train_refiner.max_instances = self.max_train_instances
|
| 135 |
+
self.train_refiner.apply_to_streams = ["train"]
|
| 136 |
self.steps.append(self.train_refiner)
|
| 137 |
|
| 138 |
self.validation_refiner.max_instances = self.max_validation_instances
|
| 139 |
+
self.validation_refiner.apply_to_streams = ["validation"]
|
| 140 |
self.steps.append(self.validation_refiner)
|
| 141 |
|
| 142 |
self.test_refiner.max_instances = self.max_test_instances
|
| 143 |
+
self.test_refiner.apply_to_streams = ["test"]
|
| 144 |
self.steps.append(self.test_refiner)
|
| 145 |
|
| 146 |
render = StandardRenderer(
|
|
|
|
| 152 |
|
| 153 |
self.steps.append(render)
|
| 154 |
|
| 155 |
+
if self.augmentor.augment_model_input:
|
| 156 |
+
self.steps.append(self.augmentor)
|
| 157 |
+
|
| 158 |
postprocessors = render.get_postprocessors()
|
| 159 |
|
| 160 |
self.steps.append(
|
|
|
|
| 173 |
def prepare(self):
|
| 174 |
assert (
|
| 175 |
self.template_card_index is None or self.template is None
|
| 176 |
+
), f"Specify either template ({self.template}) or template_card_index ({self.template_card_index}) but not both"
|
| 177 |
+
assert not (
|
| 178 |
+
self.template_card_index is None and self.template is None
|
| 179 |
+
), "Specify either template or template_card_index in card"
|
| 180 |
if self.template_card_index is not None:
|
| 181 |
+
try:
|
| 182 |
+
self.template = self.card.templates[self.template_card_index]
|
| 183 |
+
except Exception as e:
|
| 184 |
+
if isinstance(self.card.templates, dict):
|
| 185 |
+
options = self.card.templates.keys()
|
| 186 |
+
else:
|
| 187 |
+
options = list(range(0, len(self.card.templates)))
|
| 188 |
+
raise ValueError(
|
| 189 |
+
f"card_template_index '{self.template_card_index}' is not in card. Available options: {options}"
|
| 190 |
+
) from e
|
| 191 |
assert (
|
| 192 |
self.instruction_card_index is None or self.instruction is None
|
| 193 |
), "Specify either instruction or instruction_card_index"
|
|
|
|
| 198 |
|
| 199 |
|
| 200 |
class StandardRecipe(StandardRecipeWithIndexes):
|
| 201 |
+
"""This class represents a standard recipe for data processing and preperation.
|
| 202 |
+
|
| 203 |
+
This class can be used to prepare a recipe.
|
| 204 |
with all necessary steps, refiners and renderers included. It allows to set various
|
| 205 |
parameters and steps in a sequential manner for preparing the recipe.
|
| 206 |
|
|
|
|
| 208 |
card (TaskCard): TaskCard object associated with the recipe.
|
| 209 |
template (Template, optional): Template object to be used for the recipe.
|
| 210 |
instruction (Instruction, optional): Instruction object to be used for the recipe.
|
| 211 |
+
loader_limit (int, optional): Specifies the maximum number of instances per stream to be returned from the loader (used to reduce loading time in large datasets)
|
| 212 |
format (ICLFormat, optional): ICLFormat object to be used for the recipe.
|
| 213 |
train_refiner (StreamRefiner, optional): Train refiner to be used in the recipe.
|
| 214 |
max_train_instances (int, optional): Maximum training instances for the refiner.
|
|
|
|
| 223 |
demos_field (str, optional): Field name for demos. Default is "demos".
|
| 224 |
sampler (Sampler, optional): Sampler object to be used in the recipe.
|
| 225 |
steps (List[StreamingOperator], optional): List of StreamingOperator objects to be used in the recipe.
|
| 226 |
+
augmentor (Augmentor) : Augmentor to be used to pseudo randomly augment the source text
|
| 227 |
instruction_card_index (int, optional): Index of instruction card to be used
|
| 228 |
for preparing the recipe.
|
| 229 |
template_card_index (int, optional): Index of template card to be used for
|