Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| # from transformers import pipeline | |
| # from transformers.utils import logging | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| import torch | |
| from llama_index.core import VectorStoreIndex | |
| from llama_index.core import Document | |
| from llama_index.core import Settings | |
| from llama_index.llms.huggingface import ( | |
| HuggingFaceInferenceAPI, | |
| HuggingFaceLLM, | |
| ) | |
| from huggingface_hub import login | |
| import chromadb as chromadb | |
| from chromadb.utils import embedding_functions | |
| # | |
| CHROMA_DATA_PATH = "chroma_data/" | |
| EMBED_MODEL = "BAAI/bge-m3" | |
| # all-MiniLM-L6-v2 | |
| CHUNK_SIZE = 800 | |
| CHUNK_OVERLAP = 50 | |
| max_results = 3 | |
| min_len = 40 | |
| min_distance = 0.35 | |
| max_distance = 0.6 | |
| temperature = 0.55 | |
| max_tokens=3072 | |
| top_p=0.8 | |
| frequency_penalty=0.0 | |
| presence_penalty=0.15 | |
| system_sr = "Zoveš se U-Chat AI asistent i pomažeš korisniku usluga kompanije United Group. Korisnik postavlja pitanje ili problem, upareno sa dodatnima saznanjima. Na osnovu toga napiši korisniku kratak i ljubazan odgovor koji kompletira njegov zahtev ili mu daje odgovor na pitanje. " | |
| # " Ako ne znaš odgovor, reci da ne znaš, ne izmišljaj ga." | |
| system_sr += "Usluge kompanije United Group uključuju i kablovsku mrežu za digitalnu televiziju, pristup internetu, uređaj EON SMART BOX za TV sadržaj, kao i fiksnu telefoniju." | |
| chroma_client = chromadb.PersistentClient(CHROMA_DATA_PATH) | |
| embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction( | |
| model_name=EMBED_MODEL | |
| ) | |
| collection = chroma_client.get_or_create_collection( | |
| name="chroma_data", | |
| embedding_function=embedding_func, | |
| metadata={"hnsw:space": "cosine"}, | |
| ) | |
| # | |
| HF_TOKEN = "wncSKewozDfuZCXCyFbYbAMHgUrfcrumkc" | |
| # | |
| login(token=("hf_" + HF_TOKEN)) | |
| system_propmpt = system_sr | |
| # "facebook/blenderbot-400M-distill", facebook/blenderbot-400M-distill, stabilityai/stablelm-zephyr-3b, BAAI/bge-small-en-v1.5 | |
| Settings.llm = HuggingFaceInferenceAPI(model_name="mistralai/Mistral-Nemo-Instruct-2407", | |
| device_map="auto", | |
| system_prompt = system_propmpt, | |
| context_window=4096, | |
| max_new_tokens=256, | |
| # stopping_ids=[50278, 50279, 50277, 1, 0], | |
| generate_kwargs={"temperature": 0.5, "do_sample": False}, | |
| # tokenizer_kwargs={"max_length": 4096}, | |
| tokenizer_name="mistralai/Mistral-Nemo-Instruct-2407", | |
| ) | |
| Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-m3") | |
| #documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."), | |
| # Document(text="Indian parliament elections happened in April-May 2021. XYZ Party won."), | |
| # Document(text="Indian parliament elections happened in 2020. ABC Party won."), | |
| # ] | |
| #index = VectorStoreIndex.from_documents( | |
| # documents, | |
| #) | |
| vector_store = ChromaVectorStore(chroma_collection=collection) | |
| index = VectorStoreIndex.from_vector_store(vector_store, embed_model=Settings.embed_model) | |
| query_engine = index.as_query_engine() | |
| def rag(input_text, file): | |
| return query_engine.query( | |
| input_text | |
| ) | |
| iface = gr.Interface(fn=rag, inputs=[gr.Textbox(label="Pitanje:", lines=6), gr.File()], | |
| outputs=[gr.Textbox(label="Odgovor:", lines=6)], | |
| title="Kako Vam mogu pomoći?", | |
| description= "UChat" | |
| ) | |
| iface.launch() |