Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,52 +1,56 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
# from transformers.utils import logging
|
| 4 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 5 |
-
import torch
|
| 6 |
-
from llama_index.core import VectorStoreIndex
|
| 7 |
-
from llama_index.core import Document
|
| 8 |
-
from llama_index.core import Settings
|
| 9 |
-
from llama_index.llms.huggingface import (
|
| 10 |
-
HuggingFaceInferenceAPI,
|
| 11 |
-
HuggingFaceLLM,
|
| 12 |
-
)
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."),
|
| 34 |
-
Document(text="Indian parliament elections happened in April-May 2021. XYZ Party won."),
|
| 35 |
-
Document(text="Indian parliament elections happened in 2020. ABC Party won."),
|
| 36 |
-
]
|
| 37 |
-
index = VectorStoreIndex.from_documents(
|
| 38 |
-
documents,
|
| 39 |
-
)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def respond(
|
| 8 |
+
message,
|
| 9 |
+
history: list[tuple[str, str]],
|
| 10 |
+
system_message,
|
| 11 |
+
max_tokens,
|
| 12 |
+
temperature,
|
| 13 |
+
top_p,
|
| 14 |
+
):
|
| 15 |
+
messages = [{"role": "system", "content": system_message}]
|
| 16 |
+
for val in history:
|
| 17 |
+
if val[0]:
|
| 18 |
+
messages.append({"role": "user", "content": val[0]})
|
| 19 |
+
if val[1]:
|
| 20 |
+
messages.append({"role": "assistant", "content": val[1]})
|
| 21 |
+
|
| 22 |
+
messages.append({"role": "user", "content": message})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
response = ""
|
| 25 |
+
|
| 26 |
+
for message in client.chat_completion(
|
| 27 |
+
messages,
|
| 28 |
+
max_tokens=max_tokens,
|
| 29 |
+
stream=True,
|
| 30 |
+
temperature=temperature,
|
| 31 |
+
top_p=top_p,
|
| 32 |
+
):
|
| 33 |
+
token = message.choices[0].delta.content
|
| 34 |
+
|
| 35 |
+
response += token
|
| 36 |
+
yield response
|
| 37 |
+
|
| 38 |
+
"""
|
| 39 |
+
https://docs.llamaindex.ai/en/stable/examples/customization/llms/SimpleIndexDemo-Huggingface_stablelm/
|
| 40 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 41 |
+
"""
|
| 42 |
+
demo = gr.ChatInterface(
|
| 43 |
+
respond,
|
| 44 |
+
additional_inputs=[
|
| 45 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 46 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 47 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 48 |
+
gr.Slider(
|
| 49 |
+
minimum=0.1,
|
| 50 |
+
maximum=1.0,
|
| 51 |
+
value=0.95,
|
| 52 |
+
step=0.05,
|
| 53 |
+
label="Top-p (nucleus sampling)",
|
| 54 |
+
),
|
| 55 |
+
],
|
| 56 |
+
)
|