Spaces:
Configuration error
Configuration error
| import numpy as np | |
| import torch | |
| from tqdm import tqdm | |
| from typing import List | |
| from torchvision.utils import make_grid | |
| from base import BaseTrainer | |
| from utils import inf_loop, linear_rampup, sigmoid_rampup, linear_rampdown | |
| import sys | |
| from sklearn.mixture import GaussianMixture | |
| import torch.nn.functional as F | |
| import warnings | |
| warnings.filterwarnings("ignore", category=DeprecationWarning) | |
| class Trainer(BaseTrainer): | |
| """ | |
| Trainer class | |
| Note: | |
| Inherited from BaseTrainer. | |
| """ | |
| def __init__(self, model1, model2, model_ema1, model_ema2, train_criterion1, train_criterion2, metrics, optimizer1, optimizer2, config, | |
| data_loader1, data_loader2, | |
| valid_data_loader=None, | |
| test_data_loader=None, | |
| lr_scheduler1=None, lr_scheduler2=None, | |
| len_epoch=None, val_criterion=None, | |
| model_ema1_copy=None, model_ema2_copy=None): | |
| super().__init__(model1, model2, model_ema1, model_ema2, train_criterion1, train_criterion2, | |
| metrics, optimizer1, optimizer2, config, val_criterion, model_ema1_copy, model_ema2_copy) | |
| self.config = config.config | |
| self.data_loader1 = data_loader1 | |
| self.data_loader2 = data_loader2 | |
| if len_epoch is None: | |
| # epoch-based training | |
| self.len_epoch = len(self.data_loader1) | |
| else: | |
| # iteration-based training | |
| self.data_loader1 = inf_loop(data_loader1) | |
| self.data_loader2 = inf_loop(data_loader2) | |
| self.len_epoch = len_epoch | |
| self.valid_data_loader = valid_data_loader | |
| self.test_data_loader = test_data_loader | |
| self.do_validation = self.valid_data_loader is not None | |
| self.do_test = self.test_data_loader is not None | |
| self.lr_scheduler1 = lr_scheduler1 | |
| self.lr_scheduler2 = lr_scheduler2 | |
| self.log_step = int(np.sqrt(self.data_loader1.batch_size)) | |
| self.train_loss_list: List[float] = [] | |
| self.val_loss_list: List[float] = [] | |
| self.test_loss_list: List[float] = [] | |
| def _eval_metrics(self, output, target): | |
| acc_metrics = np.zeros(len(self.metrics)) | |
| for i, metric in enumerate(self.metrics): | |
| acc_metrics[i] += metric(output, target) | |
| self.writer.add_scalar('{}'.format(metric.__name__), acc_metrics[i]) | |
| return acc_metrics | |
| def _train_epoch(self, epoch, model, model_ema, model_ema2, data_loader, train_criterion, optimizer, lr_scheduler, device = 'cpu', queue = None): | |
| """ | |
| Training logic for an epoch | |
| :param epoch: Current training epoch. | |
| :return: A log that contains all information you want to save. | |
| Note: | |
| If you have additional information to record, for example: | |
| > additional_log = {"x": x, "y": y} | |
| merge it with log before return. i.e. | |
| > log = {**log, **additional_log} | |
| > return log | |
| The metrics in log must have the key 'metrics'. | |
| """ | |
| model.train() | |
| model_ema.train() | |
| total_loss = 0 | |
| total_metrics = np.zeros(len(self.metrics)) | |
| total_metrics_ema = np.zeros(len(self.metrics)) | |
| if hasattr(data_loader.dataset, 'num_raw_example'): | |
| num_examp = data_loader.dataset.num_raw_example | |
| else: | |
| num_examp = len(data_loader.dataset) | |
| local_step = 0 | |
| with tqdm(data_loader) as progress: | |
| for batch_idx, (data, target, indexs, _) in enumerate(progress): | |
| progress.set_description_str(f'Train epoch {epoch}') | |
| data_original = data | |
| target_original = target | |
| target = torch.zeros(len(target), self.config['num_classes']).scatter_(1, target.view(-1,1), 1) | |
| data, target, target_original = data.to(device), target.float().to(device), target_original.to(device) | |
| data, target, mixup_l, mix_index = self._mixup_data(data, target, alpha = self.config['mixup_alpha'], device = device) | |
| output = model(data) | |
| data_original = data_original.to(device) | |
| output_original = model_ema2(data_original) | |
| output_original = output_original.data.detach() | |
| train_criterion.update_hist(epoch, output_original, indexs.numpy().tolist(), mix_index = mix_index, mixup_l = mixup_l) | |
| local_step += 1 | |
| loss, probs = train_criterion(self.global_step + local_step, output, target) | |
| optimizer.zero_grad() | |
| loss.backward() | |
| optimizer.step() | |
| self.update_ema_variables(model, model_ema, self.global_step + local_step, self.config['ema_alpha']) | |
| self.writer.set_step((epoch - 1) * self.len_epoch + batch_idx) | |
| self.writer.add_scalar('loss', loss.item()) | |
| self.train_loss_list.append(loss.item()) | |
| total_loss += loss.item() | |
| total_metrics += self._eval_metrics(output, target.argmax(dim=1)) | |
| if output_original is not None: | |
| total_metrics_ema += self._eval_metrics(output_original, target.argmax(dim=1)) | |
| if batch_idx % self.log_step == 0: | |
| progress.set_postfix_str(' {} Loss: {:.6f}'.format( | |
| self._progress(batch_idx), | |
| loss.item())) | |
| if batch_idx == self.len_epoch: | |
| break | |
| if hasattr(data_loader, 'run'): | |
| data_loader.run() | |
| log = { | |
| 'global step': self.global_step, | |
| 'local_step': local_step, | |
| 'loss': total_loss / self.len_epoch, | |
| 'metrics': (total_metrics / self.len_epoch).tolist(), | |
| 'metrics_ema': (total_metrics_ema / self.len_epoch).tolist(), | |
| 'learning rate': lr_scheduler.get_lr() | |
| } | |
| if lr_scheduler is not None: | |
| lr_scheduler.step() | |
| if queue is None: | |
| return log | |
| else: | |
| queue.put(log) | |
| def _valid_epoch(self, epoch, model1, model2, device = 'cpu', queue = None): | |
| """ | |
| Validate after training an epoch | |
| :return: A log that contains information about validation | |
| Note: | |
| The validation metrics in log must have the key 'val_metrics'. | |
| """ | |
| model1.eval() | |
| model2.eval() | |
| total_val_loss = 0 | |
| total_val_metrics = np.zeros(len(self.metrics)) | |
| with torch.no_grad(): | |
| with tqdm(self.valid_data_loader) as progress: | |
| for batch_idx, (data, target, _, _) in enumerate(progress): | |
| progress.set_description_str(f'Valid epoch {epoch}') | |
| data, target = data.to(device), target.to(device) | |
| output1 = model1(data) | |
| output2 = model2(data) | |
| output = 0.5*(output1 + output2) | |
| loss = self.val_criterion(output, target) | |
| self.writer.set_step((epoch - 1) * len(self.valid_data_loader) + batch_idx, 'valid') | |
| self.writer.add_scalar('loss', loss.item()) | |
| self.val_loss_list.append(loss.item()) | |
| total_val_loss += loss.item() | |
| total_val_metrics += self._eval_metrics(output, target) | |
| self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True)) | |
| # #add histogram of model parameters to the tensorboard | |
| # for name, p in model.named_parameters(): | |
| # self.writer.add_histogram(name, p, bins='auto') | |
| if queue is None: | |
| return { | |
| 'val_loss': total_val_loss / len(self.valid_data_loader), | |
| 'val_metrics': (total_val_metrics / len(self.valid_data_loader)).tolist() | |
| } | |
| else: | |
| queue.put({ | |
| 'val_loss': total_val_loss / len(self.valid_data_loader), | |
| 'val_metrics': (total_val_metrics / len(self.valid_data_loader)).tolist() | |
| }) | |
| def _test_epoch(self, epoch, model1, model2, device = 'cpu', queue = None): | |
| """ | |
| Test after training an epoch | |
| :return: A log that contains information about test | |
| Note: | |
| The Test metrics in log must have the key 'val_metrics'. | |
| """ | |
| model1.eval() | |
| model2.eval() | |
| total_test_loss = 0 | |
| total_test_metrics = np.zeros(len(self.metrics)) | |
| with torch.no_grad(): | |
| with tqdm(self.test_data_loader) as progress: | |
| for batch_idx, (data, target,indexs,_) in enumerate(progress): | |
| progress.set_description_str(f'Test epoch {epoch}') | |
| data, target = data.to(device), target.to(device) | |
| output1 = model1(data) | |
| output2 = model2(data) | |
| output = 0.5*(output1 + output2) | |
| loss = self.val_criterion(output, target) | |
| self.writer.set_step((epoch - 1) * len(self.test_data_loader) + batch_idx, 'test') | |
| self.writer.add_scalar('loss', loss.item()) | |
| self.test_loss_list.append(loss.item()) | |
| total_test_loss += loss.item() | |
| total_test_metrics += self._eval_metrics(output, target) | |
| self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True)) | |
| #add histogram of model parameters to the tensorboard | |
| for name, p in model1.named_parameters(): | |
| self.writer.add_histogram(name, p, bins='auto') | |
| if queue is None: | |
| return { | |
| 'test_loss': total_test_loss / len(self.test_data_loader), | |
| 'test_metrics': (total_test_metrics / len(self.test_data_loader)).tolist() | |
| } | |
| else: | |
| queue.put({ | |
| 'test_loss': total_test_loss / len(self.test_data_loader), | |
| 'test_metrics': (total_test_metrics / len(self.test_data_loader)).tolist() | |
| }) | |
| def _warmup_epoch(self, epoch, model, data_loader, optimizer, train_criterion, lr_scheduler, device = 'cpu', queue = None): | |
| total_loss = 0 | |
| total_metrics = np.zeros(len(self.metrics)) | |
| model.train() | |
| with tqdm(data_loader) as progress: | |
| for batch_idx, (data, target, indexs , _) in enumerate(progress): | |
| progress.set_description_str(f'Train epoch {epoch}') | |
| data, target = data.to(device), target.long().to(device) | |
| optimizer.zero_grad() | |
| output = model(data) | |
| out_prob = output.data.detach() | |
| train_criterion.update_hist(epoch, out_prob ,indexs.cpu().detach().numpy().tolist()) | |
| loss = torch.nn.functional.cross_entropy(output, target) | |
| loss.backward() | |
| optimizer.step() | |
| # self.writer.set_step((epoch - 1) * self.len_epoch + batch_idx) | |
| # self.writer.add_scalar('loss', loss.item()) | |
| self.train_loss_list.append(loss.item()) | |
| total_loss += loss.item() | |
| total_metrics += self._eval_metrics(output, target) | |
| if batch_idx % self.log_step == 0: | |
| progress.set_postfix_str(' {} Loss: {:.6f}'.format( | |
| self._progress(batch_idx), | |
| loss.item())) | |
| if batch_idx == self.len_epoch: | |
| break | |
| log = { | |
| 'loss': total_loss / self.len_epoch, | |
| 'noise detection rate' : 0.0, | |
| 'metrics': (total_metrics / self.len_epoch).tolist(), | |
| 'learning rate': lr_scheduler.get_lr() | |
| } | |
| if queue is None: | |
| return log | |
| else: | |
| queue.put(log) | |
| def eval_train(self, epoch, model_ema2, train_criterion): | |
| #model.eval() | |
| num_samples = args.num_batches*args.batch_size | |
| losses = torch.zeros(num_samples) | |
| with torch.no_grad(): | |
| for batch_idx, (inputs, targets, path) in enumerate(eval_loader): | |
| inputs, targets = inputs.cuda(), targets.cuda() | |
| output0 = model_ema2(inputs) | |
| output0 = output0.data.detach() | |
| output1, output2, output3 = None, None, None | |
| train_criterion.update_hist(epoch, output0, output1, output2, output3, indexs.numpy().tolist(),mix_index = mix_index, mixup_l = mixup_l) | |
| def update_ema_variables(self, model, model_ema, global_step, alpha_=0.997): | |
| # Use the true average until the exponential average is more correct | |
| if alpha_ == 0: | |
| ema_param.data = param.data | |
| else: | |
| if self.config['ema_update']: | |
| alpha = sigmoid_rampup(global_step + 1, self.config['ema_step'])*alpha_ | |
| else: | |
| alpha = min(1 - 1 / (global_step + 1), alpha_) | |
| for ema_param, param in zip(model_ema.parameters(), model.parameters()): | |
| ema_param.data.mul_(alpha).add_(1 - alpha, param.data) | |
| def _progress(self, batch_idx): | |
| base = '[{}/{} ({:.0f}%)]' | |
| if hasattr(self.data_loader1, 'n_samples'): | |
| current = batch_idx * self.data_loader1.batch_size | |
| total = self.data_loader1.n_samples | |
| else: | |
| current = batch_idx | |
| total = self.len_epoch | |
| return base.format(current, total, 100.0 * current / total) | |
| def _mixup_data(self, x, y, alpha=1.0, device = 'cpu'): | |
| '''Returns mixed inputs, pairs of targets, and lambda''' | |
| if alpha > 0: | |
| lam = np.random.beta(alpha, alpha) | |
| lam = max(lam, 1-lam) | |
| batch_size = x.size()[0] | |
| mix_index = torch.randperm(batch_size).to(device) | |
| mixed_x = lam * x + (1 - lam) * x[mix_index, :]# | |
| mixed_target = lam * y + (1 - lam) * y[mix_index, :] | |
| return mixed_x, mixed_target, lam, mix_index | |
| else: | |
| lam = 1 | |
| return x, y, lam, ... | |
| def _mixup_criterion(self, pred, y_a, y_b, lam, *args): | |
| loss_a, prob_a, entropy_a= self.train_criterion(pred, y_a, *args) | |
| loss_b, porb_b, entropy_b = self.train_criterion(pred, y_b, *args) | |
| return lam * loss_a + (1 - lam) * loss_b, lam * prob_a + (1-lam) * porb_b, lam * entropy_a + (1-lam) * entropy_b | |