cyberosa
commited on
Commit
·
0487dc0
1
Parent(s):
2acfed7
updating scripts
Browse files- scripts/cleaning_old_info.py +5 -1
- scripts/cloud_storage.py +83 -0
- scripts/daily_data.py +3 -5
- scripts/markets.py +81 -16
- scripts/mech_request_utils.py +6 -9
- scripts/profitability.py +7 -179
- scripts/pull_data.py +17 -54
- scripts/staking.py +0 -1
- scripts/tools.py +15 -14
- scripts/utils.py +3 -55
- scripts/web3_utils.py +258 -0
scripts/cleaning_old_info.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
from profitability import
|
|
|
|
| 3 |
from staking import label_trades_by_staking
|
| 4 |
|
| 5 |
|
|
@@ -39,6 +40,9 @@ def clean_old_data_from_parquet_files(cutoff_date: str):
|
|
| 39 |
print(f"length before filtering {len(all_trades)}")
|
| 40 |
all_trades = all_trades.loc[all_trades["creation_timestamp"] > min_date_utc]
|
| 41 |
print(f"length after filtering {len(all_trades)}")
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
except Exception as e:
|
| 44 |
print(f"Error cleaning all trades profitability file {e}")
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
from profitability import summary_analyse
|
| 3 |
+
from utils import DATA_DIR
|
| 4 |
from staking import label_trades_by_staking
|
| 5 |
|
| 6 |
|
|
|
|
| 40 |
print(f"length before filtering {len(all_trades)}")
|
| 41 |
all_trades = all_trades.loc[all_trades["creation_timestamp"] > min_date_utc]
|
| 42 |
print(f"length after filtering {len(all_trades)}")
|
| 43 |
+
all_trades.to_parquet(
|
| 44 |
+
DATA_DIR / "all_trades_profitability.parquet", index=False
|
| 45 |
+
)
|
| 46 |
|
| 47 |
except Exception as e:
|
| 48 |
print(f"Error cleaning all trades profitability file {e}")
|
scripts/cloud_storage.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from minio import Minio
|
| 2 |
+
from minio.error import S3Error
|
| 3 |
+
import os
|
| 4 |
+
import argparse
|
| 5 |
+
|
| 6 |
+
from utils import HIST_DIR
|
| 7 |
+
|
| 8 |
+
MINIO_ENDPOINT = "minio.autonolas.tech"
|
| 9 |
+
ACCESS_KEY = os.environ.get("CLOUD_ACCESS_KEY", None)
|
| 10 |
+
SECRET_KEY = os.environ.get("CLOUD_SECRET_KEY", None)
|
| 11 |
+
BUCKET_NAME = "weekly-stats"
|
| 12 |
+
FOLDER_NAME = "historical_data"
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def initialize_client():
|
| 16 |
+
# Initialize the MinIO client
|
| 17 |
+
client = Minio(
|
| 18 |
+
MINIO_ENDPOINT,
|
| 19 |
+
access_key=ACCESS_KEY,
|
| 20 |
+
secret_key=SECRET_KEY,
|
| 21 |
+
secure=True, # Set to False if not using HTTPS
|
| 22 |
+
)
|
| 23 |
+
return client
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def upload_file(client, filename: str, file_path: str):
|
| 27 |
+
"""Upload a file to the bucket"""
|
| 28 |
+
try:
|
| 29 |
+
OBJECT_NAME = FOLDER_NAME + "/" + filename
|
| 30 |
+
print(
|
| 31 |
+
f"filename={filename}, object_name={OBJECT_NAME} and file_path={file_path}"
|
| 32 |
+
)
|
| 33 |
+
client.fput_object(
|
| 34 |
+
BUCKET_NAME, OBJECT_NAME, file_path, part_size=10 * 1024 * 1024
|
| 35 |
+
) # 10MB parts
|
| 36 |
+
print(f"File '{file_path}' uploaded as '{OBJECT_NAME}'.")
|
| 37 |
+
except S3Error as err:
|
| 38 |
+
print(f"Error uploading file: {err}")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def download_file(client, filename: str, file_path: str):
|
| 42 |
+
"""Download the file back"""
|
| 43 |
+
try:
|
| 44 |
+
OBJECT_NAME = FOLDER_NAME + "/" + filename
|
| 45 |
+
client.fget_object(BUCKET_NAME, OBJECT_NAME, "downloaded_" + file_path)
|
| 46 |
+
print(f"File '{OBJECT_NAME}' downloaded as 'downloaded_{file_path}'.")
|
| 47 |
+
except S3Error as err:
|
| 48 |
+
print(f"Error downloading file: {err}")
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def load_historical_file(client, filename: str):
|
| 52 |
+
"""Function to load one file into the cloud storage"""
|
| 53 |
+
file_path = filename
|
| 54 |
+
upload_file(client, filename, file_path)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def process_historical_files(client):
|
| 58 |
+
"""Process all parquet files in historical_data folder"""
|
| 59 |
+
|
| 60 |
+
# Walk through all files in the folder
|
| 61 |
+
for filename in os.listdir(HIST_DIR):
|
| 62 |
+
# Check if file is a parquet file
|
| 63 |
+
if filename.endswith(".parquet"):
|
| 64 |
+
try:
|
| 65 |
+
load_historical_file(client, filename)
|
| 66 |
+
print(f"Successfully processed {filename}")
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"Error processing {filename}: {str(e)}")
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
parser = argparse.ArgumentParser(
|
| 73 |
+
description="Load files to the cloud storate for historical data"
|
| 74 |
+
)
|
| 75 |
+
parser.add_argument("param_1", type=str, help="Name of the file to upload")
|
| 76 |
+
|
| 77 |
+
# Parse the arguments
|
| 78 |
+
args = parser.parse_args()
|
| 79 |
+
filename = args.param_1
|
| 80 |
+
|
| 81 |
+
client = initialize_client()
|
| 82 |
+
# load_historical_file(client, filename)
|
| 83 |
+
process_historical_files(client)
|
scripts/daily_data.py
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
import logging
|
| 2 |
-
from utils import measure_execution_time
|
| 3 |
-
from pull_data import DATA_DIR
|
| 4 |
-
from tools import DEFAULT_FILENAME as TOOLS_FILENAME, generate_tools_file
|
| 5 |
from profitability import (
|
| 6 |
analyse_all_traders,
|
| 7 |
label_trades_by_staking,
|
|
@@ -15,8 +13,8 @@ logging.basicConfig(level=logging.INFO)
|
|
| 15 |
def prepare_live_metrics(
|
| 16 |
tools_filename="new_tools.parquet", trades_filename="new_fpmmTrades.parquet"
|
| 17 |
):
|
| 18 |
-
fpmmTrades = pd.read_parquet(
|
| 19 |
-
tools = pd.read_parquet(
|
| 20 |
print("Analysing trades...")
|
| 21 |
all_trades_df = analyse_all_traders(fpmmTrades, tools, daily_info=True)
|
| 22 |
|
|
|
|
| 1 |
import logging
|
| 2 |
+
from utils import measure_execution_time, DATA_DIR, TMP_DIR
|
|
|
|
|
|
|
| 3 |
from profitability import (
|
| 4 |
analyse_all_traders,
|
| 5 |
label_trades_by_staking,
|
|
|
|
| 13 |
def prepare_live_metrics(
|
| 14 |
tools_filename="new_tools.parquet", trades_filename="new_fpmmTrades.parquet"
|
| 15 |
):
|
| 16 |
+
fpmmTrades = pd.read_parquet(TMP_DIR / trades_filename)
|
| 17 |
+
tools = pd.read_parquet(TMP_DIR / tools_filename)
|
| 18 |
print("Analysing trades...")
|
| 19 |
all_trades_df = analyse_all_traders(fpmmTrades, tools, daily_info=True)
|
| 20 |
|
scripts/markets.py
CHANGED
|
@@ -21,14 +21,12 @@ import functools
|
|
| 21 |
import warnings
|
| 22 |
from string import Template
|
| 23 |
from typing import Optional, Generator, Callable
|
| 24 |
-
|
| 25 |
import pandas as pd
|
| 26 |
import requests
|
| 27 |
from tqdm import tqdm
|
| 28 |
-
|
| 29 |
from typing import List, Dict
|
| 30 |
-
from
|
| 31 |
-
from
|
| 32 |
from queries import (
|
| 33 |
FPMMS_QUERY,
|
| 34 |
ID_FIELD,
|
|
@@ -44,22 +42,16 @@ from queries import (
|
|
| 44 |
|
| 45 |
ResponseItemType = List[Dict[str, str]]
|
| 46 |
SubgraphResponseType = Dict[str, ResponseItemType]
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
CREATOR = "0x89c5cc945dd550BcFfb72Fe42BfF002429F46Fec"
|
| 50 |
-
PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557"
|
| 51 |
BATCH_SIZE = 1000
|
| 52 |
-
|
|
|
|
| 53 |
OMEN_SUBGRAPH_URL = Template(
|
| 54 |
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
|
| 55 |
)
|
| 56 |
|
| 57 |
MAX_UINT_HEX = "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
|
| 58 |
DEFAULT_FILENAME = "fpmms.parquet"
|
| 59 |
-
|
| 60 |
-
ROOT_DIR = SCRIPTS_DIR.parent
|
| 61 |
-
DATA_DIR = ROOT_DIR / "data"
|
| 62 |
-
market_creators_map = {"quickstart": CREATOR, "pearl": PEARL_CREATOR}
|
| 63 |
|
| 64 |
|
| 65 |
class RetriesExceeded(Exception):
|
|
@@ -144,15 +136,72 @@ def query_subgraph(url: str, query: str, key: str) -> SubgraphResponseType:
|
|
| 144 |
return data
|
| 145 |
|
| 146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
def fpmms_fetcher(trader_category: str) -> Generator[ResponseItemType, int, None]:
|
| 148 |
"""An indefinite fetcher for the FPMMs."""
|
| 149 |
omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
|
| 150 |
print(f"omen_subgraph = {omen_subgraph}")
|
| 151 |
|
| 152 |
if trader_category == "pearl":
|
| 153 |
-
creator_id =
|
| 154 |
else: # quickstart
|
| 155 |
-
creator_id =
|
| 156 |
while True:
|
| 157 |
fpmm_id = yield
|
| 158 |
fpmms_query = FPMMS_QUERY.substitute(
|
|
@@ -254,7 +303,7 @@ def add_market_creator(tools: pd.DataFrame) -> None:
|
|
| 254 |
# Check if fpmmTrades.parquet is in the same directory
|
| 255 |
try:
|
| 256 |
trades_filename = "fpmmTrades.parquet"
|
| 257 |
-
fpmms_trades = pd.read_parquet(
|
| 258 |
except FileNotFoundError:
|
| 259 |
print("Error: fpmmTrades.parquet not found. No market creator added")
|
| 260 |
return
|
|
@@ -278,5 +327,21 @@ def add_market_creator(tools: pd.DataFrame) -> None:
|
|
| 278 |
return tools
|
| 279 |
|
| 280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
if __name__ == "__main__":
|
| 282 |
etl("all_fpmms.parquet")
|
|
|
|
| 21 |
import warnings
|
| 22 |
from string import Template
|
| 23 |
from typing import Optional, Generator, Callable
|
|
|
|
| 24 |
import pandas as pd
|
| 25 |
import requests
|
| 26 |
from tqdm import tqdm
|
|
|
|
| 27 |
from typing import List, Dict
|
| 28 |
+
from utils import SUBGRAPH_API_KEY, DATA_DIR, TMP_DIR
|
| 29 |
+
from web3_utils import FPMM_QS_CREATOR, FPMM_PEARL_CREATOR, query_omen_xdai_subgraph
|
| 30 |
from queries import (
|
| 31 |
FPMMS_QUERY,
|
| 32 |
ID_FIELD,
|
|
|
|
| 42 |
|
| 43 |
ResponseItemType = List[Dict[str, str]]
|
| 44 |
SubgraphResponseType = Dict[str, ResponseItemType]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
BATCH_SIZE = 1000
|
| 46 |
+
DEFAULT_TO_TIMESTAMP = 2147483647 # around year 2038
|
| 47 |
+
DEFAULT_FROM_TIMESTAMP = 0
|
| 48 |
OMEN_SUBGRAPH_URL = Template(
|
| 49 |
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
|
| 50 |
)
|
| 51 |
|
| 52 |
MAX_UINT_HEX = "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
|
| 53 |
DEFAULT_FILENAME = "fpmms.parquet"
|
| 54 |
+
market_creators_map = {"quickstart": FPMM_QS_CREATOR, "pearl": FPMM_PEARL_CREATOR}
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
class RetriesExceeded(Exception):
|
|
|
|
| 136 |
return data
|
| 137 |
|
| 138 |
|
| 139 |
+
def transform_fpmmTrades(df: pd.DataFrame) -> pd.DataFrame:
|
| 140 |
+
print("Transforming trades dataframe")
|
| 141 |
+
# convert creator to address
|
| 142 |
+
df["creator"] = df["creator"].apply(lambda x: x["id"])
|
| 143 |
+
|
| 144 |
+
# normalize fpmm column
|
| 145 |
+
fpmm = pd.json_normalize(df["fpmm"])
|
| 146 |
+
fpmm.columns = [f"fpmm.{col}" for col in fpmm.columns]
|
| 147 |
+
df = pd.concat([df, fpmm], axis=1)
|
| 148 |
+
|
| 149 |
+
# drop fpmm column
|
| 150 |
+
df.drop(["fpmm"], axis=1, inplace=True)
|
| 151 |
+
|
| 152 |
+
# change creator to creator_address
|
| 153 |
+
df.rename(columns={"creator": "trader_address"}, inplace=True)
|
| 154 |
+
print(df.head())
|
| 155 |
+
print(df.info())
|
| 156 |
+
return df
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def create_fpmmTrades(rpc: str, from_timestamp: float = DEFAULT_FROM_TIMESTAMP):
|
| 160 |
+
"""Create fpmmTrades for all trades."""
|
| 161 |
+
# Quickstart trades
|
| 162 |
+
qs_trades_json = query_omen_xdai_subgraph(
|
| 163 |
+
trader_category="quickstart",
|
| 164 |
+
from_timestamp=from_timestamp,
|
| 165 |
+
to_timestamp=DEFAULT_TO_TIMESTAMP,
|
| 166 |
+
fpmm_from_timestamp=from_timestamp,
|
| 167 |
+
fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
print(f"length of the qs_trades_json dataset {len(qs_trades_json)}")
|
| 171 |
+
|
| 172 |
+
# convert to dataframe
|
| 173 |
+
qs_df = pd.DataFrame(qs_trades_json["data"]["fpmmTrades"])
|
| 174 |
+
qs_df["market_creator"] = "quickstart"
|
| 175 |
+
qs_df = transform_fpmmTrades(qs_df)
|
| 176 |
+
|
| 177 |
+
# Pearl trades
|
| 178 |
+
pearl_trades_json = query_omen_xdai_subgraph(
|
| 179 |
+
trader_category="pearl",
|
| 180 |
+
from_timestamp=from_timestamp,
|
| 181 |
+
to_timestamp=DEFAULT_TO_TIMESTAMP,
|
| 182 |
+
fpmm_from_timestamp=from_timestamp,
|
| 183 |
+
fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
print(f"length of the pearl_trades_json dataset {len(pearl_trades_json)}")
|
| 187 |
+
|
| 188 |
+
# convert to dataframe
|
| 189 |
+
pearl_df = pd.DataFrame(pearl_trades_json["data"]["fpmmTrades"])
|
| 190 |
+
pearl_df["market_creator"] = "pearl"
|
| 191 |
+
pearl_df = transform_fpmmTrades(pearl_df)
|
| 192 |
+
|
| 193 |
+
return pd.concat([qs_df, pearl_df], ignore_index=True)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
def fpmms_fetcher(trader_category: str) -> Generator[ResponseItemType, int, None]:
|
| 197 |
"""An indefinite fetcher for the FPMMs."""
|
| 198 |
omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
|
| 199 |
print(f"omen_subgraph = {omen_subgraph}")
|
| 200 |
|
| 201 |
if trader_category == "pearl":
|
| 202 |
+
creator_id = FPMM_PEARL_CREATOR
|
| 203 |
else: # quickstart
|
| 204 |
+
creator_id = FPMM_QS_CREATOR
|
| 205 |
while True:
|
| 206 |
fpmm_id = yield
|
| 207 |
fpmms_query = FPMMS_QUERY.substitute(
|
|
|
|
| 303 |
# Check if fpmmTrades.parquet is in the same directory
|
| 304 |
try:
|
| 305 |
trades_filename = "fpmmTrades.parquet"
|
| 306 |
+
fpmms_trades = pd.read_parquet(TMP_DIR / trades_filename)
|
| 307 |
except FileNotFoundError:
|
| 308 |
print("Error: fpmmTrades.parquet not found. No market creator added")
|
| 309 |
return
|
|
|
|
| 327 |
return tools
|
| 328 |
|
| 329 |
|
| 330 |
+
def fpmmTrades_etl(rpc: str, trades_filename: str, from_timestamp: str) -> None:
|
| 331 |
+
print("Generating the trades file")
|
| 332 |
+
try:
|
| 333 |
+
fpmmTrades = create_fpmmTrades(rpc, from_timestamp=from_timestamp)
|
| 334 |
+
except FileNotFoundError:
|
| 335 |
+
print(f"Error creating {trades_filename} file .")
|
| 336 |
+
|
| 337 |
+
# make sure trader_address is in the columns
|
| 338 |
+
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
|
| 339 |
+
|
| 340 |
+
# lowercase and strip creator_address
|
| 341 |
+
fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()
|
| 342 |
+
fpmmTrades.to_parquet(DATA_DIR / trades_filename, index=False)
|
| 343 |
+
return
|
| 344 |
+
|
| 345 |
+
|
| 346 |
if __name__ == "__main__":
|
| 347 |
etl("all_fpmms.parquet")
|
scripts/mech_request_utils.py
CHANGED
|
@@ -22,31 +22,27 @@ import json
|
|
| 22 |
import time
|
| 23 |
import pickle
|
| 24 |
from random import uniform
|
| 25 |
-
from typing import Any, Dict,
|
| 26 |
from pathlib import Path
|
| 27 |
import requests
|
| 28 |
from gql import Client, gql
|
| 29 |
from gql.transport.requests import RequestsHTTPTransport
|
| 30 |
from tools import (
|
| 31 |
-
IPFS_POLL_INTERVAL,
|
| 32 |
GET_CONTENTS_BATCH_SIZE,
|
| 33 |
IRRELEVANT_TOOLS,
|
| 34 |
create_session,
|
| 35 |
request,
|
| 36 |
)
|
| 37 |
from tqdm import tqdm
|
| 38 |
-
from
|
| 39 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
| 40 |
|
| 41 |
NUM_WORKERS = 10
|
| 42 |
BLOCKS_CHUNK_SIZE = 10000
|
| 43 |
TEXT_ALIGNMENT = 30
|
| 44 |
MINIMUM_WRITE_FILE_DELAY_SECONDS = 20
|
| 45 |
MECH_FROM_BLOCK_RANGE = 50000
|
| 46 |
-
SCRIPTS_DIR = Path(__file__).parent
|
| 47 |
-
ROOT_DIR = SCRIPTS_DIR.parent
|
| 48 |
-
JSON_DATA_DIR = ROOT_DIR / "json_data"
|
| 49 |
-
DATA_DIR = ROOT_DIR / "data"
|
| 50 |
IPFS_ADDRESS = "https://gateway.autonolas.tech/ipfs/"
|
| 51 |
THEGRAPH_ENDPOINT = "https://api.studio.thegraph.com/query/57238/mech/0.0.2"
|
| 52 |
last_write_time = 0.0
|
|
@@ -119,7 +115,7 @@ def collect_all_mech_requests(from_block: int, to_block: int, filename: str) ->
|
|
| 119 |
id_gt = "0x00"
|
| 120 |
while True:
|
| 121 |
variables = {
|
| 122 |
-
"sender_not_in": [
|
| 123 |
"id_gt": id_gt,
|
| 124 |
"blockNumber_gte": str(from_block), # str
|
| 125 |
"blockNumber_lte": str(to_block), # str
|
|
@@ -417,6 +413,7 @@ def update_block_request_map(block_request_id_map: dict) -> None:
|
|
| 417 |
|
| 418 |
|
| 419 |
def fix_duplicate_requestIds(requests_filename: str, delivers_filename: str) -> dict:
|
|
|
|
| 420 |
with open(JSON_DATA_DIR / delivers_filename, "r") as file:
|
| 421 |
data_delivers = json.load(file)
|
| 422 |
|
|
@@ -455,7 +452,7 @@ def fix_duplicate_requestIds(requests_filename: str, delivers_filename: str) ->
|
|
| 455 |
def merge_requests_delivers(
|
| 456 |
requests_filename: str, delivers_filename: str, filename: str
|
| 457 |
) -> None:
|
| 458 |
-
|
| 459 |
"""Function to map requests and delivers"""
|
| 460 |
with open(JSON_DATA_DIR / delivers_filename, "r") as file:
|
| 461 |
mech_delivers = json.load(file)
|
|
|
|
| 22 |
import time
|
| 23 |
import pickle
|
| 24 |
from random import uniform
|
| 25 |
+
from typing import Any, Dict, Tuple
|
| 26 |
from pathlib import Path
|
| 27 |
import requests
|
| 28 |
from gql import Client, gql
|
| 29 |
from gql.transport.requests import RequestsHTTPTransport
|
| 30 |
from tools import (
|
|
|
|
| 31 |
GET_CONTENTS_BATCH_SIZE,
|
| 32 |
IRRELEVANT_TOOLS,
|
| 33 |
create_session,
|
| 34 |
request,
|
| 35 |
)
|
| 36 |
from tqdm import tqdm
|
| 37 |
+
from web3_utils import FPMM_QS_CREATOR, FPMM_PEARL_CREATOR, IPFS_POLL_INTERVAL
|
| 38 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 39 |
+
from utils import DATA_DIR, JSON_DATA_DIR
|
| 40 |
|
| 41 |
NUM_WORKERS = 10
|
| 42 |
BLOCKS_CHUNK_SIZE = 10000
|
| 43 |
TEXT_ALIGNMENT = 30
|
| 44 |
MINIMUM_WRITE_FILE_DELAY_SECONDS = 20
|
| 45 |
MECH_FROM_BLOCK_RANGE = 50000
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
IPFS_ADDRESS = "https://gateway.autonolas.tech/ipfs/"
|
| 47 |
THEGRAPH_ENDPOINT = "https://api.studio.thegraph.com/query/57238/mech/0.0.2"
|
| 48 |
last_write_time = 0.0
|
|
|
|
| 115 |
id_gt = "0x00"
|
| 116 |
while True:
|
| 117 |
variables = {
|
| 118 |
+
"sender_not_in": [FPMM_QS_CREATOR, FPMM_PEARL_CREATOR],
|
| 119 |
"id_gt": id_gt,
|
| 120 |
"blockNumber_gte": str(from_block), # str
|
| 121 |
"blockNumber_lte": str(to_block), # str
|
|
|
|
| 413 |
|
| 414 |
|
| 415 |
def fix_duplicate_requestIds(requests_filename: str, delivers_filename: str) -> dict:
|
| 416 |
+
print("Fix duplicated request Ids")
|
| 417 |
with open(JSON_DATA_DIR / delivers_filename, "r") as file:
|
| 418 |
data_delivers = json.load(file)
|
| 419 |
|
|
|
|
| 452 |
def merge_requests_delivers(
|
| 453 |
requests_filename: str, delivers_filename: str, filename: str
|
| 454 |
) -> None:
|
| 455 |
+
print("Merge request delivers")
|
| 456 |
"""Function to map requests and delivers"""
|
| 457 |
with open(JSON_DATA_DIR / delivers_filename, "r") as file:
|
| 458 |
mech_delivers = json.load(file)
|
scripts/profitability.py
CHANGED
|
@@ -18,17 +18,14 @@
|
|
| 18 |
# ------------------------------------------------------------------------------
|
| 19 |
|
| 20 |
import time
|
| 21 |
-
import requests
|
| 22 |
import datetime
|
| 23 |
import pandas as pd
|
| 24 |
-
from collections import defaultdict
|
| 25 |
from typing import Any
|
| 26 |
-
from string import Template
|
| 27 |
from enum import Enum
|
| 28 |
from tqdm import tqdm
|
| 29 |
import numpy as np
|
| 30 |
import os
|
| 31 |
-
|
| 32 |
from get_mech_info import (
|
| 33 |
DATETIME_60_DAYS_AGO,
|
| 34 |
update_fpmmTrades_parquet,
|
|
@@ -36,26 +33,20 @@ from get_mech_info import (
|
|
| 36 |
update_all_trades_parquet,
|
| 37 |
)
|
| 38 |
from utils import (
|
| 39 |
-
SUBGRAPH_API_KEY,
|
| 40 |
wei_to_unit,
|
| 41 |
convert_hex_to_int,
|
| 42 |
-
_to_content,
|
| 43 |
JSON_DATA_DIR,
|
| 44 |
DATA_DIR,
|
| 45 |
)
|
| 46 |
-
from queries import omen_xdai_trades_query, conditional_tokens_gc_user_query
|
| 47 |
from staking import label_trades_by_staking
|
| 48 |
|
| 49 |
-
QUERY_BATCH_SIZE = 1000
|
| 50 |
DUST_THRESHOLD = 10000000000000
|
| 51 |
INVALID_ANSWER = -1
|
| 52 |
-
FPMM_QS_CREATOR = "0x89c5cc945dd550bcffb72fe42bff002429f46fec"
|
| 53 |
-
FPMM_PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557"
|
| 54 |
DEFAULT_FROM_DATE = "1970-01-01T00:00:00"
|
| 55 |
DEFAULT_TO_DATE = "2038-01-19T03:14:07"
|
| 56 |
-
|
| 57 |
DEFAULT_60_DAYS_AGO_TIMESTAMP = (DATETIME_60_DAYS_AGO).timestamp()
|
| 58 |
-
|
| 59 |
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
|
| 60 |
DEFAULT_MECH_FEE = 0.01
|
| 61 |
DUST_THRESHOLD = 10000000000000
|
|
@@ -148,107 +139,6 @@ SUMMARY_STATS_DF_COLS = [
|
|
| 148 |
"mean_mech_calls_per_trade",
|
| 149 |
"mean_mech_fee_amount_per_trade",
|
| 150 |
]
|
| 151 |
-
headers = {
|
| 152 |
-
"Accept": "application/json, multipart/mixed",
|
| 153 |
-
"Content-Type": "application/json",
|
| 154 |
-
}
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
def _query_omen_xdai_subgraph(
|
| 158 |
-
trader_category: str,
|
| 159 |
-
from_timestamp: float,
|
| 160 |
-
to_timestamp: float,
|
| 161 |
-
fpmm_from_timestamp: float,
|
| 162 |
-
fpmm_to_timestamp: float,
|
| 163 |
-
) -> dict[str, Any]:
|
| 164 |
-
"""Query the subgraph."""
|
| 165 |
-
OMEN_SUBGRAPH_URL = Template(
|
| 166 |
-
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
|
| 167 |
-
)
|
| 168 |
-
omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
|
| 169 |
-
print(f"omen_subgraph = {omen_subgraph}")
|
| 170 |
-
grouped_results = defaultdict(list)
|
| 171 |
-
id_gt = ""
|
| 172 |
-
if trader_category == "quickstart":
|
| 173 |
-
creator_id = FPMM_QS_CREATOR.lower()
|
| 174 |
-
else: # pearl
|
| 175 |
-
creator_id = FPMM_PEARL_CREATOR.lower()
|
| 176 |
-
|
| 177 |
-
while True:
|
| 178 |
-
query = omen_xdai_trades_query.substitute(
|
| 179 |
-
fpmm_creator=creator_id,
|
| 180 |
-
creationTimestamp_gte=int(from_timestamp),
|
| 181 |
-
creationTimestamp_lte=int(to_timestamp),
|
| 182 |
-
fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),
|
| 183 |
-
fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),
|
| 184 |
-
first=QUERY_BATCH_SIZE,
|
| 185 |
-
id_gt=id_gt,
|
| 186 |
-
)
|
| 187 |
-
content_json = _to_content(query)
|
| 188 |
-
|
| 189 |
-
res = requests.post(omen_subgraph, headers=headers, json=content_json)
|
| 190 |
-
result_json = res.json()
|
| 191 |
-
# print(f"result = {result_json}")
|
| 192 |
-
user_trades = result_json.get("data", {}).get("fpmmTrades", [])
|
| 193 |
-
|
| 194 |
-
if not user_trades:
|
| 195 |
-
break
|
| 196 |
-
|
| 197 |
-
for trade in user_trades:
|
| 198 |
-
fpmm_id = trade.get("fpmm", {}).get("id")
|
| 199 |
-
grouped_results[fpmm_id].append(trade)
|
| 200 |
-
|
| 201 |
-
id_gt = user_trades[len(user_trades) - 1]["id"]
|
| 202 |
-
|
| 203 |
-
all_results = {
|
| 204 |
-
"data": {
|
| 205 |
-
"fpmmTrades": [
|
| 206 |
-
trade
|
| 207 |
-
for trades_list in grouped_results.values()
|
| 208 |
-
for trade in trades_list
|
| 209 |
-
]
|
| 210 |
-
}
|
| 211 |
-
}
|
| 212 |
-
|
| 213 |
-
return all_results
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
def _query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:
|
| 217 |
-
"""Query the subgraph."""
|
| 218 |
-
SUBGRAPH_URL = Template(
|
| 219 |
-
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/7s9rGBffUTL8kDZuxvvpuc46v44iuDarbrADBFw5uVp2"""
|
| 220 |
-
)
|
| 221 |
-
subgraph = SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
|
| 222 |
-
all_results: dict[str, Any] = {"data": {"user": {"userPositions": []}}}
|
| 223 |
-
userPositions_id_gt = ""
|
| 224 |
-
while True:
|
| 225 |
-
query = conditional_tokens_gc_user_query.substitute(
|
| 226 |
-
id=creator.lower(),
|
| 227 |
-
first=QUERY_BATCH_SIZE,
|
| 228 |
-
userPositions_id_gt=userPositions_id_gt,
|
| 229 |
-
)
|
| 230 |
-
content_json = {"query": query}
|
| 231 |
-
print("sending query to subgraph")
|
| 232 |
-
res = requests.post(subgraph, headers=headers, json=content_json)
|
| 233 |
-
result_json = res.json()
|
| 234 |
-
# print(f"result = {result_json}")
|
| 235 |
-
user_data = result_json.get("data", {}).get("user", {})
|
| 236 |
-
|
| 237 |
-
if not user_data:
|
| 238 |
-
break
|
| 239 |
-
|
| 240 |
-
user_positions = user_data.get("userPositions", [])
|
| 241 |
-
|
| 242 |
-
if user_positions:
|
| 243 |
-
all_results["data"]["user"]["userPositions"].extend(user_positions)
|
| 244 |
-
userPositions_id_gt = user_positions[len(user_positions) - 1]["id"]
|
| 245 |
-
else:
|
| 246 |
-
break
|
| 247 |
-
|
| 248 |
-
if len(all_results["data"]["user"]["userPositions"]) == 0:
|
| 249 |
-
return {"data": {"user": None}}
|
| 250 |
-
|
| 251 |
-
return all_results
|
| 252 |
|
| 253 |
|
| 254 |
def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
|
|
@@ -267,68 +157,10 @@ def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
|
|
| 267 |
return False
|
| 268 |
|
| 269 |
|
| 270 |
-
def transform_fpmmTrades(df: pd.DataFrame) -> pd.DataFrame:
|
| 271 |
-
print("Transforming trades dataframe")
|
| 272 |
-
# convert creator to address
|
| 273 |
-
df["creator"] = df["creator"].apply(lambda x: x["id"])
|
| 274 |
-
|
| 275 |
-
# normalize fpmm column
|
| 276 |
-
fpmm = pd.json_normalize(df["fpmm"])
|
| 277 |
-
fpmm.columns = [f"fpmm.{col}" for col in fpmm.columns]
|
| 278 |
-
df = pd.concat([df, fpmm], axis=1)
|
| 279 |
-
|
| 280 |
-
# drop fpmm column
|
| 281 |
-
df.drop(["fpmm"], axis=1, inplace=True)
|
| 282 |
-
|
| 283 |
-
# change creator to creator_address
|
| 284 |
-
df.rename(columns={"creator": "trader_address"}, inplace=True)
|
| 285 |
-
print(df.head())
|
| 286 |
-
print(df.info())
|
| 287 |
-
return df
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
def create_fpmmTrades(rpc: str, from_timestamp: float = DEFAULT_FROM_TIMESTAMP):
|
| 291 |
-
"""Create fpmmTrades for all trades."""
|
| 292 |
-
# Quickstart trades
|
| 293 |
-
qs_trades_json = _query_omen_xdai_subgraph(
|
| 294 |
-
trader_category="quickstart",
|
| 295 |
-
from_timestamp=from_timestamp,
|
| 296 |
-
to_timestamp=DEFAULT_TO_TIMESTAMP,
|
| 297 |
-
fpmm_from_timestamp=from_timestamp,
|
| 298 |
-
fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
|
| 299 |
-
)
|
| 300 |
-
|
| 301 |
-
print(f"length of the qs_trades_json dataset {len(qs_trades_json)}")
|
| 302 |
-
|
| 303 |
-
# convert to dataframe
|
| 304 |
-
qs_df = pd.DataFrame(qs_trades_json["data"]["fpmmTrades"])
|
| 305 |
-
qs_df["market_creator"] = "quickstart"
|
| 306 |
-
qs_df = transform_fpmmTrades(qs_df)
|
| 307 |
-
|
| 308 |
-
# Pearl trades
|
| 309 |
-
pearl_trades_json = _query_omen_xdai_subgraph(
|
| 310 |
-
trader_category="pearl",
|
| 311 |
-
from_timestamp=from_timestamp,
|
| 312 |
-
to_timestamp=DEFAULT_TO_TIMESTAMP,
|
| 313 |
-
fpmm_from_timestamp=from_timestamp,
|
| 314 |
-
fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
|
| 315 |
-
)
|
| 316 |
-
|
| 317 |
-
print(f"length of the pearl_trades_json dataset {len(pearl_trades_json)}")
|
| 318 |
-
|
| 319 |
-
# convert to dataframe
|
| 320 |
-
pearl_df = pd.DataFrame(pearl_trades_json["data"]["fpmmTrades"])
|
| 321 |
-
pearl_df["market_creator"] = "pearl"
|
| 322 |
-
pearl_df = transform_fpmmTrades(pearl_df)
|
| 323 |
-
|
| 324 |
-
return pd.concat([qs_df, pearl_df], ignore_index=True)
|
| 325 |
-
|
| 326 |
-
|
| 327 |
def prepare_profitalibity_data(
|
| 328 |
rpc: str,
|
| 329 |
tools_filename: str,
|
| 330 |
trades_filename: str,
|
| 331 |
-
from_timestamp: float,
|
| 332 |
) -> pd.DataFrame:
|
| 333 |
"""Prepare data for profitalibity analysis."""
|
| 334 |
|
|
@@ -354,10 +186,9 @@ def prepare_profitalibity_data(
|
|
| 354 |
# Check if fpmmTrades.parquet is in the same directory
|
| 355 |
print("Generating the trades file")
|
| 356 |
try:
|
| 357 |
-
fpmmTrades =
|
| 358 |
-
fpmmTrades.to_parquet(DATA_DIR / trades_filename, index=False)
|
| 359 |
except FileNotFoundError:
|
| 360 |
-
print(f"Error
|
| 361 |
|
| 362 |
# make sure trader_address is in the columns
|
| 363 |
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
|
|
@@ -401,7 +232,7 @@ def analyse_trader(
|
|
| 401 |
|
| 402 |
# Fetch user's conditional tokens gc graph
|
| 403 |
try:
|
| 404 |
-
user_json =
|
| 405 |
except Exception as e:
|
| 406 |
print(f"Error fetching user data: {e}")
|
| 407 |
return trades_df
|
|
@@ -575,16 +406,13 @@ def run_profitability_analysis(
|
|
| 575 |
rpc: str,
|
| 576 |
tools_filename: str,
|
| 577 |
trades_filename: str,
|
| 578 |
-
from_timestamp: float,
|
| 579 |
merge: bool = False,
|
| 580 |
):
|
| 581 |
"""Create all trades analysis."""
|
| 582 |
|
| 583 |
# load dfs from data folder for analysis
|
| 584 |
print(f"Preparing data with {tools_filename} and {trades_filename}")
|
| 585 |
-
fpmmTrades = prepare_profitalibity_data(
|
| 586 |
-
rpc, tools_filename, trades_filename, from_timestamp
|
| 587 |
-
)
|
| 588 |
if merge:
|
| 589 |
update_tools_parquet(rpc, tools_filename)
|
| 590 |
tools = pd.read_parquet(DATA_DIR / "tools.parquet")
|
|
|
|
| 18 |
# ------------------------------------------------------------------------------
|
| 19 |
|
| 20 |
import time
|
|
|
|
| 21 |
import datetime
|
| 22 |
import pandas as pd
|
|
|
|
| 23 |
from typing import Any
|
|
|
|
| 24 |
from enum import Enum
|
| 25 |
from tqdm import tqdm
|
| 26 |
import numpy as np
|
| 27 |
import os
|
| 28 |
+
from web3_utils import query_conditional_tokens_gc_subgraph
|
| 29 |
from get_mech_info import (
|
| 30 |
DATETIME_60_DAYS_AGO,
|
| 31 |
update_fpmmTrades_parquet,
|
|
|
|
| 33 |
update_all_trades_parquet,
|
| 34 |
)
|
| 35 |
from utils import (
|
|
|
|
| 36 |
wei_to_unit,
|
| 37 |
convert_hex_to_int,
|
|
|
|
| 38 |
JSON_DATA_DIR,
|
| 39 |
DATA_DIR,
|
| 40 |
)
|
|
|
|
| 41 |
from staking import label_trades_by_staking
|
| 42 |
|
|
|
|
| 43 |
DUST_THRESHOLD = 10000000000000
|
| 44 |
INVALID_ANSWER = -1
|
|
|
|
|
|
|
| 45 |
DEFAULT_FROM_DATE = "1970-01-01T00:00:00"
|
| 46 |
DEFAULT_TO_DATE = "2038-01-19T03:14:07"
|
| 47 |
+
|
| 48 |
DEFAULT_60_DAYS_AGO_TIMESTAMP = (DATETIME_60_DAYS_AGO).timestamp()
|
| 49 |
+
|
| 50 |
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
|
| 51 |
DEFAULT_MECH_FEE = 0.01
|
| 52 |
DUST_THRESHOLD = 10000000000000
|
|
|
|
| 139 |
"mean_mech_calls_per_trade",
|
| 140 |
"mean_mech_fee_amount_per_trade",
|
| 141 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
|
| 144 |
def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
|
|
|
|
| 157 |
return False
|
| 158 |
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
def prepare_profitalibity_data(
|
| 161 |
rpc: str,
|
| 162 |
tools_filename: str,
|
| 163 |
trades_filename: str,
|
|
|
|
| 164 |
) -> pd.DataFrame:
|
| 165 |
"""Prepare data for profitalibity analysis."""
|
| 166 |
|
|
|
|
| 186 |
# Check if fpmmTrades.parquet is in the same directory
|
| 187 |
print("Generating the trades file")
|
| 188 |
try:
|
| 189 |
+
fpmmTrades = pd.read_parquet(DATA_DIR / trades_filename)
|
|
|
|
| 190 |
except FileNotFoundError:
|
| 191 |
+
print(f"Error reading {trades_filename} file .")
|
| 192 |
|
| 193 |
# make sure trader_address is in the columns
|
| 194 |
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
|
|
|
|
| 232 |
|
| 233 |
# Fetch user's conditional tokens gc graph
|
| 234 |
try:
|
| 235 |
+
user_json = query_conditional_tokens_gc_subgraph(trader_address)
|
| 236 |
except Exception as e:
|
| 237 |
print(f"Error fetching user data: {e}")
|
| 238 |
return trades_df
|
|
|
|
| 406 |
rpc: str,
|
| 407 |
tools_filename: str,
|
| 408 |
trades_filename: str,
|
|
|
|
| 409 |
merge: bool = False,
|
| 410 |
):
|
| 411 |
"""Create all trades analysis."""
|
| 412 |
|
| 413 |
# load dfs from data folder for analysis
|
| 414 |
print(f"Preparing data with {tools_filename} and {trades_filename}")
|
| 415 |
+
fpmmTrades = prepare_profitalibity_data(rpc, tools_filename, trades_filename)
|
|
|
|
|
|
|
| 416 |
if merge:
|
| 417 |
update_tools_parquet(rpc, tools_filename)
|
| 418 |
tools = pd.read_parquet(DATA_DIR / "tools.parquet")
|
scripts/pull_data.py
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
import logging
|
| 2 |
from datetime import datetime
|
| 3 |
import pandas as pd
|
| 4 |
-
from markets import
|
| 5 |
-
etl as mkt_etl,
|
| 6 |
-
DEFAULT_FILENAME as MARKETS_FILENAME,
|
| 7 |
-
)
|
| 8 |
from tools import DEFAULT_FILENAME as TOOLS_FILENAME, generate_tools_file
|
| 9 |
from profitability import run_profitability_analysis, DEFAULT_60_DAYS_AGO_TIMESTAMP
|
| 10 |
from utils import (
|
|
@@ -23,6 +20,8 @@ from get_mech_info import (
|
|
| 23 |
from update_tools_accuracy import compute_tools_accuracy
|
| 24 |
from cleaning_old_info import clean_old_data_from_parquet_files
|
| 25 |
from web3_utils import updating_timestamps
|
|
|
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -57,7 +56,8 @@ def save_historical_data():
|
|
| 57 |
tools = pd.read_parquet(DATA_DIR / "tools.parquet")
|
| 58 |
filename = f"tools_{timestamp}.parquet"
|
| 59 |
tools.to_parquet(HIST_DIR / filename, index=False)
|
| 60 |
-
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
print(f"Error saving tools file in the historical folder {e}")
|
| 63 |
|
|
@@ -65,6 +65,8 @@ def save_historical_data():
|
|
| 65 |
all_trades = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
|
| 66 |
filename = f"all_trades_profitability_{timestamp}.parquet"
|
| 67 |
all_trades.to_parquet(HIST_DIR / filename, index=False)
|
|
|
|
|
|
|
| 68 |
|
| 69 |
except Exception as e:
|
| 70 |
print(
|
|
@@ -81,7 +83,7 @@ def only_new_weekly_analysis():
|
|
| 81 |
mkt_etl(MARKETS_FILENAME)
|
| 82 |
logging.info("Markets ETL completed")
|
| 83 |
|
| 84 |
-
#
|
| 85 |
logging.info("Generating the mech json files")
|
| 86 |
# get only new data
|
| 87 |
latest_timestamp = get_mech_events_since_last_run()
|
|
@@ -90,6 +92,12 @@ def only_new_weekly_analysis():
|
|
| 90 |
return
|
| 91 |
logging.info(f"Finished generating the mech json files from {latest_timestamp}")
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
# Run tools ETL
|
| 94 |
logging.info("Generate and parse the tools content")
|
| 95 |
# generate only new file
|
|
@@ -104,7 +112,6 @@ def only_new_weekly_analysis():
|
|
| 104 |
rpc=rpc,
|
| 105 |
tools_filename="new_tools.parquet",
|
| 106 |
trades_filename="new_fpmmTrades.parquet",
|
| 107 |
-
from_timestamp=int(latest_timestamp.timestamp()),
|
| 108 |
merge=True,
|
| 109 |
)
|
| 110 |
|
|
@@ -121,58 +128,14 @@ def only_new_weekly_analysis():
|
|
| 121 |
|
| 122 |
save_historical_data()
|
| 123 |
|
| 124 |
-
clean_old_data_from_parquet_files("2024-10-
|
| 125 |
-
|
| 126 |
-
compute_tools_accuracy()
|
| 127 |
-
|
| 128 |
-
logging.info("Weekly analysis files generated and saved")
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
def old_weekly_analysis():
|
| 132 |
-
"""Run weekly analysis for the FPMMS project."""
|
| 133 |
-
rpc = RPC
|
| 134 |
-
# Run markets ETL
|
| 135 |
-
logging.info("Running markets ETL")
|
| 136 |
-
mkt_etl(MARKETS_FILENAME)
|
| 137 |
-
logging.info("Markets ETL completed")
|
| 138 |
-
|
| 139 |
-
# New tools ETL
|
| 140 |
-
logging.info("Generating the mech json files")
|
| 141 |
-
|
| 142 |
-
get_mech_events_last_60_days()
|
| 143 |
-
logging.info("Finished generating the mech json files")
|
| 144 |
-
|
| 145 |
-
# Run tools ETL
|
| 146 |
-
logging.info("Generate and parse the tools content")
|
| 147 |
-
|
| 148 |
-
generate_tools_file("tools_info.json", TOOLS_FILENAME)
|
| 149 |
-
logging.info("Tools ETL completed")
|
| 150 |
-
add_current_answer(TOOLS_FILENAME)
|
| 151 |
-
|
| 152 |
-
# Run profitability analysis
|
| 153 |
-
logging.info("Running profitability analysis")
|
| 154 |
-
run_profitability_analysis(
|
| 155 |
-
rpc=rpc,
|
| 156 |
-
tools_filename=TOOLS_FILENAME,
|
| 157 |
-
trades_filename="fpmmTrades.parquet",
|
| 158 |
-
from_timestamp=DEFAULT_60_DAYS_AGO_TIMESTAMP,
|
| 159 |
-
)
|
| 160 |
-
logging.info("Profitability analysis completed")
|
| 161 |
-
|
| 162 |
-
try:
|
| 163 |
-
updating_timestamps(rpc, TOOLS_FILENAME)
|
| 164 |
-
except Exception as e:
|
| 165 |
-
logging.error("Error while updating timestamps of tools")
|
| 166 |
-
print(e)
|
| 167 |
|
| 168 |
compute_tools_accuracy()
|
| 169 |
|
|
|
|
|
|
|
| 170 |
logging.info("Weekly analysis files generated and saved")
|
| 171 |
|
| 172 |
|
| 173 |
if __name__ == "__main__":
|
| 174 |
only_new_weekly_analysis()
|
| 175 |
-
# weekly_analysis()
|
| 176 |
-
# rpc = RPC
|
| 177 |
-
# updating_timestamps(rpc)
|
| 178 |
-
# compute_tools_accuracy()
|
|
|
|
| 1 |
import logging
|
| 2 |
from datetime import datetime
|
| 3 |
import pandas as pd
|
| 4 |
+
from markets import etl as mkt_etl, DEFAULT_FILENAME as MARKETS_FILENAME, fpmmTrades_etl
|
|
|
|
|
|
|
|
|
|
| 5 |
from tools import DEFAULT_FILENAME as TOOLS_FILENAME, generate_tools_file
|
| 6 |
from profitability import run_profitability_analysis, DEFAULT_60_DAYS_AGO_TIMESTAMP
|
| 7 |
from utils import (
|
|
|
|
| 20 |
from update_tools_accuracy import compute_tools_accuracy
|
| 21 |
from cleaning_old_info import clean_old_data_from_parquet_files
|
| 22 |
from web3_utils import updating_timestamps
|
| 23 |
+
from manage_space_files import move_files
|
| 24 |
+
from cloud_storage import load_historical_file
|
| 25 |
|
| 26 |
|
| 27 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 56 |
tools = pd.read_parquet(DATA_DIR / "tools.parquet")
|
| 57 |
filename = f"tools_{timestamp}.parquet"
|
| 58 |
tools.to_parquet(HIST_DIR / filename, index=False)
|
| 59 |
+
# save into cloud storage
|
| 60 |
+
# load_historical_file(filename)
|
| 61 |
except Exception as e:
|
| 62 |
print(f"Error saving tools file in the historical folder {e}")
|
| 63 |
|
|
|
|
| 65 |
all_trades = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
|
| 66 |
filename = f"all_trades_profitability_{timestamp}.parquet"
|
| 67 |
all_trades.to_parquet(HIST_DIR / filename, index=False)
|
| 68 |
+
# save into cloud storage
|
| 69 |
+
# load_historical_file(filename)
|
| 70 |
|
| 71 |
except Exception as e:
|
| 72 |
print(
|
|
|
|
| 83 |
mkt_etl(MARKETS_FILENAME)
|
| 84 |
logging.info("Markets ETL completed")
|
| 85 |
|
| 86 |
+
# Mech events ETL
|
| 87 |
logging.info("Generating the mech json files")
|
| 88 |
# get only new data
|
| 89 |
latest_timestamp = get_mech_events_since_last_run()
|
|
|
|
| 92 |
return
|
| 93 |
logging.info(f"Finished generating the mech json files from {latest_timestamp}")
|
| 94 |
|
| 95 |
+
# FpmmTrades ETL
|
| 96 |
+
fpmmTrades_etl(
|
| 97 |
+
rpc=rpc,
|
| 98 |
+
trades_filename="new_fpmmTrades.parquet",
|
| 99 |
+
from_timestamp=int(latest_timestamp.timestamp()),
|
| 100 |
+
)
|
| 101 |
# Run tools ETL
|
| 102 |
logging.info("Generate and parse the tools content")
|
| 103 |
# generate only new file
|
|
|
|
| 112 |
rpc=rpc,
|
| 113 |
tools_filename="new_tools.parquet",
|
| 114 |
trades_filename="new_fpmmTrades.parquet",
|
|
|
|
| 115 |
merge=True,
|
| 116 |
)
|
| 117 |
|
|
|
|
| 128 |
|
| 129 |
save_historical_data()
|
| 130 |
|
| 131 |
+
clean_old_data_from_parquet_files("2024-10-13")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
compute_tools_accuracy()
|
| 134 |
|
| 135 |
+
# move to tmp folder the new generated files
|
| 136 |
+
move_files()
|
| 137 |
logging.info("Weekly analysis files generated and saved")
|
| 138 |
|
| 139 |
|
| 140 |
if __name__ == "__main__":
|
| 141 |
only_new_weekly_analysis()
|
|
|
|
|
|
|
|
|
|
|
|
scripts/staking.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import json
|
| 2 |
import sys
|
| 3 |
-
from pathlib import Path
|
| 4 |
from typing import Any, List
|
| 5 |
from utils import RPC, DATA_DIR
|
| 6 |
import requests
|
|
|
|
| 1 |
import json
|
| 2 |
import sys
|
|
|
|
| 3 |
from typing import Any, List
|
| 4 |
from utils import RPC, DATA_DIR
|
| 5 |
import requests
|
scripts/tools.py
CHANGED
|
@@ -44,17 +44,25 @@ from urllib3.exceptions import (
|
|
| 44 |
HTTPError as Urllib3HTTPError,
|
| 45 |
)
|
| 46 |
from web3 import Web3, HTTPProvider
|
| 47 |
-
from web3.exceptions import MismatchedABI
|
| 48 |
from markets import add_market_creator
|
| 49 |
-
from web3.types import BlockParams
|
| 50 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
from utils import (
|
| 52 |
clean,
|
| 53 |
BLOCK_FIELD,
|
| 54 |
gen_event_filename,
|
| 55 |
-
read_abi,
|
| 56 |
-
SLEEP,
|
| 57 |
-
reduce_window,
|
| 58 |
limit_text,
|
| 59 |
DATA_DIR,
|
| 60 |
JSON_DATA_DIR,
|
|
@@ -82,10 +90,7 @@ MECH_TO_INFO = {
|
|
| 82 |
"0x77af31de935740567cf4ff1986d04b2c964a786a": ("new_mech_abi.json", 30776879),
|
| 83 |
}
|
| 84 |
# optionally set the latest block to stop searching for the delivered events
|
| 85 |
-
|
| 86 |
-
LATEST_BLOCK_NAME: BlockParams = "latest"
|
| 87 |
-
BLOCK_DATA_NUMBER = "number"
|
| 88 |
-
BLOCKS_CHUNK_SIZE = 10_000
|
| 89 |
EVENT_ARGUMENTS = "args"
|
| 90 |
DATA = "data"
|
| 91 |
IPFS_LINKS_SERIES_NAME = "ipfs_links"
|
|
@@ -95,11 +100,7 @@ DEFAULT_FILENAME = "tools.parquet"
|
|
| 95 |
RE_RPC_FILTER_ERROR = r"Filter with id: '\d+' does not exist."
|
| 96 |
ABI_ERROR = "The event signature did not match the provided ABI"
|
| 97 |
HTTP_TIMEOUT = 10
|
| 98 |
-
|
| 99 |
-
N_RPC_RETRIES = 100
|
| 100 |
-
RPC_POLL_INTERVAL = 0.05
|
| 101 |
-
# IPFS_POLL_INTERVAL = 0.05 # low speed
|
| 102 |
-
IPFS_POLL_INTERVAL = 0.2 # high speed
|
| 103 |
IRRELEVANT_TOOLS = [
|
| 104 |
"openai-text-davinci-002",
|
| 105 |
"openai-text-davinci-003",
|
|
|
|
| 44 |
HTTPError as Urllib3HTTPError,
|
| 45 |
)
|
| 46 |
from web3 import Web3, HTTPProvider
|
|
|
|
| 47 |
from markets import add_market_creator
|
|
|
|
| 48 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 49 |
+
from web3_utils import (
|
| 50 |
+
read_abi,
|
| 51 |
+
SLEEP,
|
| 52 |
+
reduce_window,
|
| 53 |
+
LATEST_BLOCK,
|
| 54 |
+
LATEST_BLOCK_NAME,
|
| 55 |
+
BLOCK_DATA_NUMBER,
|
| 56 |
+
BLOCKS_CHUNK_SIZE,
|
| 57 |
+
N_RPC_RETRIES,
|
| 58 |
+
N_IPFS_RETRIES,
|
| 59 |
+
RPC_POLL_INTERVAL,
|
| 60 |
+
IPFS_POLL_INTERVAL,
|
| 61 |
+
)
|
| 62 |
from utils import (
|
| 63 |
clean,
|
| 64 |
BLOCK_FIELD,
|
| 65 |
gen_event_filename,
|
|
|
|
|
|
|
|
|
|
| 66 |
limit_text,
|
| 67 |
DATA_DIR,
|
| 68 |
JSON_DATA_DIR,
|
|
|
|
| 90 |
"0x77af31de935740567cf4ff1986d04b2c964a786a": ("new_mech_abi.json", 30776879),
|
| 91 |
}
|
| 92 |
# optionally set the latest block to stop searching for the delivered events
|
| 93 |
+
|
|
|
|
|
|
|
|
|
|
| 94 |
EVENT_ARGUMENTS = "args"
|
| 95 |
DATA = "data"
|
| 96 |
IPFS_LINKS_SERIES_NAME = "ipfs_links"
|
|
|
|
| 100 |
RE_RPC_FILTER_ERROR = r"Filter with id: '\d+' does not exist."
|
| 101 |
ABI_ERROR = "The event signature did not match the provided ABI"
|
| 102 |
HTTP_TIMEOUT = 10
|
| 103 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
IRRELEVANT_TOOLS = [
|
| 105 |
"openai-text-davinci-002",
|
| 106 |
"openai-text-davinci-003",
|
scripts/utils.py
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
-
import sys
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import time
|
| 5 |
-
from tqdm import tqdm
|
| 6 |
from typing import List, Any, Optional, Union, Tuple
|
| 7 |
import numpy as np
|
| 8 |
import pandas as pd
|
|
@@ -20,6 +18,8 @@ SCRIPTS_DIR = Path(__file__).parent
|
|
| 20 |
ROOT_DIR = SCRIPTS_DIR.parent
|
| 21 |
DATA_DIR = ROOT_DIR / "data"
|
| 22 |
JSON_DATA_DIR = ROOT_DIR / "json_data"
|
|
|
|
|
|
|
| 23 |
BLOCK_FIELD = "block"
|
| 24 |
CID_PREFIX = "f01701220"
|
| 25 |
REQUEST_ID = "requestId"
|
|
@@ -236,31 +236,6 @@ def measure_execution_time(func):
|
|
| 236 |
return wrapper
|
| 237 |
|
| 238 |
|
| 239 |
-
def parse_args() -> str:
|
| 240 |
-
"""Parse the arguments and return the RPC."""
|
| 241 |
-
if len(sys.argv) != 2:
|
| 242 |
-
raise ValueError("Expected the RPC as a positional argument.")
|
| 243 |
-
return sys.argv[1]
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
def read_abi(abi_path: str) -> str:
|
| 247 |
-
"""Read and return the wxDAI contract's ABI."""
|
| 248 |
-
with open(abi_path) as abi_file:
|
| 249 |
-
return abi_file.read()
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
def reduce_window(contract_instance, event, from_block, batch_size, latest_block):
|
| 253 |
-
"""Dynamically reduce the batch size window."""
|
| 254 |
-
keep_fraction = 1 - REDUCE_FACTOR
|
| 255 |
-
events_filter = contract_instance.events[event].build_filter()
|
| 256 |
-
events_filter.fromBlock = from_block
|
| 257 |
-
batch_size = int(batch_size * keep_fraction)
|
| 258 |
-
events_filter.toBlock = min(from_block + batch_size, latest_block)
|
| 259 |
-
tqdm.write(f"RPC timed out! Resizing batch size to {batch_size}.")
|
| 260 |
-
time.sleep(SLEEP)
|
| 261 |
-
return events_filter, batch_size
|
| 262 |
-
|
| 263 |
-
|
| 264 |
def limit_text(text: str, limit: int = 200) -> str:
|
| 265 |
"""Limit the given text"""
|
| 266 |
if len(text) > limit:
|
|
@@ -314,21 +289,6 @@ def read_n_last_lines(filename: str, n: int = 1) -> str:
|
|
| 314 |
return last_line
|
| 315 |
|
| 316 |
|
| 317 |
-
def get_earliest_block(event_name: MechEventName) -> int:
|
| 318 |
-
"""Get the earliest block number to use when filtering for events."""
|
| 319 |
-
filename = gen_event_filename(event_name)
|
| 320 |
-
if not os.path.exists(DATA_DIR / filename):
|
| 321 |
-
return 0
|
| 322 |
-
|
| 323 |
-
df = pd.read_parquet(DATA_DIR / filename)
|
| 324 |
-
block_field = f"{event_name.value.lower()}_{BLOCK_FIELD}"
|
| 325 |
-
earliest_block = int(df[block_field].max())
|
| 326 |
-
# clean and release all memory
|
| 327 |
-
del df
|
| 328 |
-
gc.collect()
|
| 329 |
-
return earliest_block
|
| 330 |
-
|
| 331 |
-
|
| 332 |
def get_question(text: str) -> str:
|
| 333 |
"""Get the question from a text."""
|
| 334 |
# Regex to find text within double quotes
|
|
@@ -366,18 +326,6 @@ def wei_to_unit(wei: int) -> float:
|
|
| 366 |
return wei / 10**18
|
| 367 |
|
| 368 |
|
| 369 |
-
def measure_execution_time(func):
|
| 370 |
-
def wrapper(*args, **kwargs):
|
| 371 |
-
start_time = time.time()
|
| 372 |
-
result = func(*args, **kwargs)
|
| 373 |
-
end_time = time.time()
|
| 374 |
-
execution_time = end_time - start_time
|
| 375 |
-
print(f"Execution time: {execution_time:.6f} seconds")
|
| 376 |
-
return result
|
| 377 |
-
|
| 378 |
-
return wrapper
|
| 379 |
-
|
| 380 |
-
|
| 381 |
def get_vote(p_yes, p_no) -> Optional[str]:
|
| 382 |
"""Return the vote."""
|
| 383 |
if p_no == p_yes:
|
|
@@ -420,7 +368,7 @@ def get_prediction_values(params: dict) -> Tuple:
|
|
| 420 |
return p_yes, p_no, confidence, info_utility
|
| 421 |
|
| 422 |
|
| 423 |
-
def
|
| 424 |
"""Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes."""
|
| 425 |
finalized_query = {
|
| 426 |
"query": q,
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
import time
|
|
|
|
| 4 |
from typing import List, Any, Optional, Union, Tuple
|
| 5 |
import numpy as np
|
| 6 |
import pandas as pd
|
|
|
|
| 18 |
ROOT_DIR = SCRIPTS_DIR.parent
|
| 19 |
DATA_DIR = ROOT_DIR / "data"
|
| 20 |
JSON_DATA_DIR = ROOT_DIR / "json_data"
|
| 21 |
+
HIST_DIR = ROOT_DIR / "historical_data"
|
| 22 |
+
TMP_DIR = ROOT_DIR / "tmp"
|
| 23 |
BLOCK_FIELD = "block"
|
| 24 |
CID_PREFIX = "f01701220"
|
| 25 |
REQUEST_ID = "requestId"
|
|
|
|
| 236 |
return wrapper
|
| 237 |
|
| 238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
def limit_text(text: str, limit: int = 200) -> str:
|
| 240 |
"""Limit the given text"""
|
| 241 |
if len(text) > limit:
|
|
|
|
| 289 |
return last_line
|
| 290 |
|
| 291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
def get_question(text: str) -> str:
|
| 293 |
"""Get the question from a text."""
|
| 294 |
# Regex to find text within double quotes
|
|
|
|
| 326 |
return wei / 10**18
|
| 327 |
|
| 328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
def get_vote(p_yes, p_no) -> Optional[str]:
|
| 330 |
"""Return the vote."""
|
| 331 |
if p_no == p_yes:
|
|
|
|
| 368 |
return p_yes, p_no, confidence, info_utility
|
| 369 |
|
| 370 |
|
| 371 |
+
def to_content(q: str) -> dict[str, Any]:
|
| 372 |
"""Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes."""
|
| 373 |
finalized_query = {
|
| 374 |
"query": q,
|
scripts/web3_utils.py
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import pickle
|
| 3 |
+
import gc
|
| 4 |
+
import time
|
| 5 |
+
import requests
|
| 6 |
+
from functools import partial
|
| 7 |
+
from string import Template
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 10 |
+
from collections import defaultdict
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
from web3 import Web3
|
| 13 |
+
from typing import Any, Optional
|
| 14 |
+
from web3.types import BlockParams
|
| 15 |
+
from utils import JSON_DATA_DIR, DATA_DIR, SUBGRAPH_API_KEY, to_content
|
| 16 |
+
from queries import conditional_tokens_gc_user_query, omen_xdai_trades_query
|
| 17 |
+
import pandas as pd
|
| 18 |
+
|
| 19 |
+
REDUCE_FACTOR = 0.25
|
| 20 |
+
SLEEP = 0.5
|
| 21 |
+
QUERY_BATCH_SIZE = 1000
|
| 22 |
+
FPMM_QS_CREATOR = "0x89c5cc945dd550bcffb72fe42bff002429f46fec"
|
| 23 |
+
FPMM_PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557"
|
| 24 |
+
LATEST_BLOCK: Optional[int] = None
|
| 25 |
+
LATEST_BLOCK_NAME: BlockParams = "latest"
|
| 26 |
+
BLOCK_DATA_NUMBER = "number"
|
| 27 |
+
BLOCKS_CHUNK_SIZE = 10_000
|
| 28 |
+
N_IPFS_RETRIES = 1
|
| 29 |
+
N_RPC_RETRIES = 100
|
| 30 |
+
RPC_POLL_INTERVAL = 0.05
|
| 31 |
+
# IPFS_POLL_INTERVAL = 0.05 # low speed
|
| 32 |
+
IPFS_POLL_INTERVAL = 0.2 # high speed
|
| 33 |
+
|
| 34 |
+
headers = {
|
| 35 |
+
"Accept": "application/json, multipart/mixed",
|
| 36 |
+
"Content-Type": "application/json",
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def parse_args() -> str:
|
| 41 |
+
"""Parse the arguments and return the RPC."""
|
| 42 |
+
if len(sys.argv) != 2:
|
| 43 |
+
raise ValueError("Expected the RPC as a positional argument.")
|
| 44 |
+
return sys.argv[1]
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def read_abi(abi_path: str) -> str:
|
| 48 |
+
"""Read and return the wxDAI contract's ABI."""
|
| 49 |
+
with open(abi_path) as abi_file:
|
| 50 |
+
return abi_file.read()
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def update_block_request_map(block_request_id_map: dict) -> None:
|
| 54 |
+
print("Saving block request id map info")
|
| 55 |
+
with open(JSON_DATA_DIR / "block_request_id_map.pickle", "wb") as handle:
|
| 56 |
+
pickle.dump(block_request_id_map, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def reduce_window(contract_instance, event, from_block, batch_size, latest_block):
|
| 60 |
+
"""Dynamically reduce the batch size window."""
|
| 61 |
+
keep_fraction = 1 - REDUCE_FACTOR
|
| 62 |
+
events_filter = contract_instance.events[event].build_filter()
|
| 63 |
+
events_filter.fromBlock = from_block
|
| 64 |
+
batch_size = int(batch_size * keep_fraction)
|
| 65 |
+
events_filter.toBlock = min(from_block + batch_size, latest_block)
|
| 66 |
+
tqdm.write(f"RPC timed out! Resizing batch size to {batch_size}.")
|
| 67 |
+
time.sleep(SLEEP)
|
| 68 |
+
return events_filter, batch_size
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def block_number_to_timestamp(block_number: int, web3: Web3) -> str:
|
| 72 |
+
"""Convert a block number to a timestamp."""
|
| 73 |
+
block = web3.eth.get_block(block_number)
|
| 74 |
+
timestamp = datetime.utcfromtimestamp(block["timestamp"])
|
| 75 |
+
try:
|
| 76 |
+
timestamp_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
| 77 |
+
timestamp = datetime.strptime(timestamp_str, "%Y-%m-%dT%H:%M:%S.%f")
|
| 78 |
+
except Exception as e:
|
| 79 |
+
timestamp = datetime.utcfromtimestamp(block["timestamp"])
|
| 80 |
+
return timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def parallelize_timestamp_conversion(df: pd.DataFrame, function: callable) -> list:
|
| 84 |
+
"""Parallelize the timestamp conversion."""
|
| 85 |
+
block_numbers = df["request_block"].tolist()
|
| 86 |
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
| 87 |
+
results = list(
|
| 88 |
+
tqdm(executor.map(function, block_numbers), total=len(block_numbers))
|
| 89 |
+
)
|
| 90 |
+
return results
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def updating_timestamps(rpc: str, tools_filename: str):
|
| 94 |
+
web3 = Web3(Web3.HTTPProvider(rpc))
|
| 95 |
+
|
| 96 |
+
tools = pd.read_parquet(DATA_DIR / tools_filename)
|
| 97 |
+
|
| 98 |
+
# Convert block number to timestamp
|
| 99 |
+
print("Converting block number to timestamp")
|
| 100 |
+
t_map = pickle.load(open(DATA_DIR / "t_map.pkl", "rb"))
|
| 101 |
+
tools["request_time"] = tools["request_block"].map(t_map)
|
| 102 |
+
|
| 103 |
+
no_data = tools["request_time"].isna().sum()
|
| 104 |
+
print(f"Total rows with no request time info = {no_data}")
|
| 105 |
+
|
| 106 |
+
# Identify tools with missing request_time and fill them
|
| 107 |
+
missing_time_indices = tools[tools["request_time"].isna()].index
|
| 108 |
+
if not missing_time_indices.empty:
|
| 109 |
+
partial_block_number_to_timestamp = partial(
|
| 110 |
+
block_number_to_timestamp, web3=web3
|
| 111 |
+
)
|
| 112 |
+
missing_timestamps = parallelize_timestamp_conversion(
|
| 113 |
+
tools.loc[missing_time_indices], partial_block_number_to_timestamp
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Update the original DataFrame with the missing timestamps
|
| 117 |
+
for i, timestamp in zip(missing_time_indices, missing_timestamps):
|
| 118 |
+
tools.at[i, "request_time"] = timestamp
|
| 119 |
+
|
| 120 |
+
tools["request_month_year"] = pd.to_datetime(tools["request_time"]).dt.strftime(
|
| 121 |
+
"%Y-%m"
|
| 122 |
+
)
|
| 123 |
+
tools["request_month_year_week"] = (
|
| 124 |
+
pd.to_datetime(tools["request_time"]).dt.to_period("W").astype(str)
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Save the tools data after the updates on the content
|
| 128 |
+
print(f"Updating file {tools_filename} with timestamps")
|
| 129 |
+
tools.to_parquet(DATA_DIR / tools_filename, index=False)
|
| 130 |
+
|
| 131 |
+
# Update t_map with new timestamps
|
| 132 |
+
new_timestamps = (
|
| 133 |
+
tools[["request_block", "request_time"]]
|
| 134 |
+
.dropna()
|
| 135 |
+
.set_index("request_block")
|
| 136 |
+
.to_dict()["request_time"]
|
| 137 |
+
)
|
| 138 |
+
t_map.update(new_timestamps)
|
| 139 |
+
|
| 140 |
+
with open(DATA_DIR / "t_map.pkl", "wb") as f:
|
| 141 |
+
pickle.dump(t_map, f)
|
| 142 |
+
|
| 143 |
+
# clean and release all memory
|
| 144 |
+
del tools
|
| 145 |
+
del t_map
|
| 146 |
+
gc.collect()
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:
|
| 150 |
+
"""Query the subgraph."""
|
| 151 |
+
SUBGRAPH_URL = Template(
|
| 152 |
+
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/7s9rGBffUTL8kDZuxvvpuc46v44iuDarbrADBFw5uVp2"""
|
| 153 |
+
)
|
| 154 |
+
subgraph = SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
|
| 155 |
+
all_results: dict[str, Any] = {"data": {"user": {"userPositions": []}}}
|
| 156 |
+
userPositions_id_gt = ""
|
| 157 |
+
while True:
|
| 158 |
+
query = conditional_tokens_gc_user_query.substitute(
|
| 159 |
+
id=creator.lower(),
|
| 160 |
+
first=QUERY_BATCH_SIZE,
|
| 161 |
+
userPositions_id_gt=userPositions_id_gt,
|
| 162 |
+
)
|
| 163 |
+
content_json = {"query": query}
|
| 164 |
+
print("sending query to subgraph")
|
| 165 |
+
res = requests.post(subgraph, headers=headers, json=content_json)
|
| 166 |
+
result_json = res.json()
|
| 167 |
+
# print(f"result = {result_json}")
|
| 168 |
+
user_data = result_json.get("data", {}).get("user", {})
|
| 169 |
+
|
| 170 |
+
if not user_data:
|
| 171 |
+
break
|
| 172 |
+
|
| 173 |
+
user_positions = user_data.get("userPositions", [])
|
| 174 |
+
|
| 175 |
+
if user_positions:
|
| 176 |
+
all_results["data"]["user"]["userPositions"].extend(user_positions)
|
| 177 |
+
userPositions_id_gt = user_positions[len(user_positions) - 1]["id"]
|
| 178 |
+
else:
|
| 179 |
+
break
|
| 180 |
+
|
| 181 |
+
if len(all_results["data"]["user"]["userPositions"]) == 0:
|
| 182 |
+
return {"data": {"user": None}}
|
| 183 |
+
|
| 184 |
+
return all_results
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def query_omen_xdai_subgraph(
|
| 188 |
+
trader_category: str,
|
| 189 |
+
from_timestamp: float,
|
| 190 |
+
to_timestamp: float,
|
| 191 |
+
fpmm_from_timestamp: float,
|
| 192 |
+
fpmm_to_timestamp: float,
|
| 193 |
+
) -> dict[str, Any]:
|
| 194 |
+
"""Query the subgraph."""
|
| 195 |
+
OMEN_SUBGRAPH_URL = Template(
|
| 196 |
+
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
|
| 197 |
+
)
|
| 198 |
+
omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
|
| 199 |
+
print(f"omen_subgraph = {omen_subgraph}")
|
| 200 |
+
grouped_results = defaultdict(list)
|
| 201 |
+
id_gt = ""
|
| 202 |
+
if trader_category == "quickstart":
|
| 203 |
+
creator_id = FPMM_QS_CREATOR.lower()
|
| 204 |
+
else: # pearl
|
| 205 |
+
creator_id = FPMM_PEARL_CREATOR.lower()
|
| 206 |
+
|
| 207 |
+
while True:
|
| 208 |
+
query = omen_xdai_trades_query.substitute(
|
| 209 |
+
fpmm_creator=creator_id,
|
| 210 |
+
creationTimestamp_gte=int(from_timestamp),
|
| 211 |
+
creationTimestamp_lte=int(to_timestamp),
|
| 212 |
+
fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),
|
| 213 |
+
fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),
|
| 214 |
+
first=QUERY_BATCH_SIZE,
|
| 215 |
+
id_gt=id_gt,
|
| 216 |
+
)
|
| 217 |
+
content_json = to_content(query)
|
| 218 |
+
|
| 219 |
+
res = requests.post(omen_subgraph, headers=headers, json=content_json)
|
| 220 |
+
result_json = res.json()
|
| 221 |
+
# print(f"result = {result_json}")
|
| 222 |
+
user_trades = result_json.get("data", {}).get("fpmmTrades", [])
|
| 223 |
+
|
| 224 |
+
if not user_trades:
|
| 225 |
+
break
|
| 226 |
+
|
| 227 |
+
for trade in user_trades:
|
| 228 |
+
fpmm_id = trade.get("fpmm", {}).get("id")
|
| 229 |
+
grouped_results[fpmm_id].append(trade)
|
| 230 |
+
|
| 231 |
+
id_gt = user_trades[len(user_trades) - 1]["id"]
|
| 232 |
+
|
| 233 |
+
all_results = {
|
| 234 |
+
"data": {
|
| 235 |
+
"fpmmTrades": [
|
| 236 |
+
trade
|
| 237 |
+
for trades_list in grouped_results.values()
|
| 238 |
+
for trade in trades_list
|
| 239 |
+
]
|
| 240 |
+
}
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
return all_results
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
# def get_earliest_block(event_name: MechEventName) -> int:
|
| 247 |
+
# """Get the earliest block number to use when filtering for events."""
|
| 248 |
+
# filename = gen_event_filename(event_name)
|
| 249 |
+
# if not os.path.exists(DATA_DIR / filename):
|
| 250 |
+
# return 0
|
| 251 |
+
|
| 252 |
+
# df = pd.read_parquet(DATA_DIR / filename)
|
| 253 |
+
# block_field = f"{event_name.value.lower()}_{BLOCK_FIELD}"
|
| 254 |
+
# earliest_block = int(df[block_field].max())
|
| 255 |
+
# # clean and release all memory
|
| 256 |
+
# del df
|
| 257 |
+
# gc.collect()
|
| 258 |
+
# return earliest_block
|