cyberosa
commited on
Commit
Β·
723f335
1
Parent(s):
397634a
updating notebooks
Browse files
.DS_Store
DELETED
|
Binary file (6.15 kB)
|
|
|
.gitignore
CHANGED
|
@@ -3,6 +3,8 @@ __pycache__/
|
|
| 3 |
*.py[cod]
|
| 4 |
*$py.class
|
| 5 |
|
|
|
|
|
|
|
| 6 |
# C extensions
|
| 7 |
*.so
|
| 8 |
|
|
@@ -157,4 +159,4 @@ cython_debug/
|
|
| 157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
-
#.idea/
|
|
|
|
| 3 |
*.py[cod]
|
| 4 |
*$py.class
|
| 5 |
|
| 6 |
+
.DS_Store
|
| 7 |
+
|
| 8 |
# C extensions
|
| 9 |
*.so
|
| 10 |
|
|
|
|
| 159 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 160 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 161 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 162 |
+
#.idea/
|
analysis.ipynb β notebooks/analysis.ipynb
RENAMED
|
File without changes
|
increase_zero_mech_calls.ipynb β notebooks/increase_zero_mech_calls.ipynb
RENAMED
|
File without changes
|
{nbs β notebooks}/test.ipynb
RENAMED
|
File without changes
|
{nbs β notebooks}/weekly_analysis.ipynb
RENAMED
|
@@ -52,7 +52,7 @@
|
|
| 52 |
},
|
| 53 |
{
|
| 54 |
"cell_type": "code",
|
| 55 |
-
"execution_count":
|
| 56 |
"metadata": {},
|
| 57 |
"outputs": [
|
| 58 |
{
|
|
@@ -60,31 +60,31 @@
|
|
| 60 |
"output_type": "stream",
|
| 61 |
"text": [
|
| 62 |
"<class 'pandas.core.frame.DataFrame'>\n",
|
| 63 |
-
"RangeIndex:
|
| 64 |
"Data columns (total 19 columns):\n",
|
| 65 |
" # Column Non-Null Count Dtype \n",
|
| 66 |
"--- ------ -------------- ----- \n",
|
| 67 |
-
" 0 trader_address
|
| 68 |
-
" 1 trade_id
|
| 69 |
-
" 2 creation_timestamp
|
| 70 |
-
" 3 title
|
| 71 |
-
" 4 market_status
|
| 72 |
-
" 5 collateral_amount
|
| 73 |
-
" 6 outcome_index
|
| 74 |
-
" 7 trade_fee_amount
|
| 75 |
-
" 8 outcomes_tokens_traded
|
| 76 |
-
" 9 current_answer
|
| 77 |
-
" 10 is_invalid
|
| 78 |
-
" 11 winning_trade
|
| 79 |
-
" 12 earnings
|
| 80 |
-
" 13 redeemed
|
| 81 |
-
" 14 redeemed_amount
|
| 82 |
-
" 15 num_mech_calls
|
| 83 |
-
" 16 mech_fee_amount
|
| 84 |
-
" 17 net_earnings
|
| 85 |
-
" 18 roi
|
| 86 |
"dtypes: bool(3), datetime64[ns, UTC](1), float64(8), int64(2), object(5)\n",
|
| 87 |
-
"memory usage: 11.
|
| 88 |
]
|
| 89 |
}
|
| 90 |
],
|
|
@@ -94,7 +94,7 @@
|
|
| 94 |
},
|
| 95 |
{
|
| 96 |
"cell_type": "code",
|
| 97 |
-
"execution_count":
|
| 98 |
"metadata": {},
|
| 99 |
"outputs": [
|
| 100 |
{
|
|
@@ -103,7 +103,7 @@
|
|
| 103 |
"Timestamp('2023-07-12 15:17:25+0000', tz='UTC')"
|
| 104 |
]
|
| 105 |
},
|
| 106 |
-
"execution_count":
|
| 107 |
"metadata": {},
|
| 108 |
"output_type": "execute_result"
|
| 109 |
}
|
|
@@ -112,6 +112,26 @@
|
|
| 112 |
"all_trades.creation_timestamp.min()"
|
| 113 |
]
|
| 114 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
{
|
| 116 |
"cell_type": "code",
|
| 117 |
"execution_count": 4,
|
|
@@ -2363,7 +2383,7 @@
|
|
| 2363 |
"claude_prediction_online = claude_prediction_online[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 2364 |
"claude_prediction_online = claude_prediction_online.sort_values(by='request_month_year_week')\n",
|
| 2365 |
"\n",
|
| 2366 |
-
"claude_prediction_online"
|
| 2367 |
]
|
| 2368 |
},
|
| 2369 |
{
|
|
@@ -2494,7 +2514,7 @@
|
|
| 2494 |
"claude_prediction_offline = claude_prediction_offline[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 2495 |
"claude_prediction_offline = claude_prediction_offline.sort_values(by='request_month_year_week')\n",
|
| 2496 |
"\n",
|
| 2497 |
-
"claude_prediction_offline"
|
| 2498 |
]
|
| 2499 |
},
|
| 2500 |
{
|
|
@@ -2737,7 +2757,7 @@
|
|
| 2737 |
"prediction_online = prediction_online[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 2738 |
"prediction_online = prediction_online.sort_values(by='request_month_year_week')\n",
|
| 2739 |
"\n",
|
| 2740 |
-
"prediction_online"
|
| 2741 |
]
|
| 2742 |
},
|
| 2743 |
{
|
|
@@ -3368,7 +3388,7 @@
|
|
| 3368 |
"prediction_online_sme = prediction_online_sme[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 3369 |
"prediction_online_sme = prediction_online_sme.sort_values(by='request_month_year_week')\n",
|
| 3370 |
"\n",
|
| 3371 |
-
"prediction_online_sme"
|
| 3372 |
]
|
| 3373 |
},
|
| 3374 |
{
|
|
@@ -3471,7 +3491,7 @@
|
|
| 3471 |
"prediction_request_rag = prediction_request_rag[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 3472 |
"prediction_request_rag = prediction_request_rag.sort_values(by='request_month_year_week')\n",
|
| 3473 |
"\n",
|
| 3474 |
-
"prediction_request_rag"
|
| 3475 |
]
|
| 3476 |
},
|
| 3477 |
{
|
|
@@ -3739,7 +3759,7 @@
|
|
| 3739 |
"prediction_url_cot_claude = prediction_url_cot_claude[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 3740 |
"prediction_url_cot_claude = prediction_url_cot_claude.sort_values(by='request_month_year_week')\n",
|
| 3741 |
"\n",
|
| 3742 |
-
"prediction_url_cot_claude"
|
| 3743 |
]
|
| 3744 |
},
|
| 3745 |
{
|
|
|
|
| 52 |
},
|
| 53 |
{
|
| 54 |
"cell_type": "code",
|
| 55 |
+
"execution_count": 4,
|
| 56 |
"metadata": {},
|
| 57 |
"outputs": [
|
| 58 |
{
|
|
|
|
| 60 |
"output_type": "stream",
|
| 61 |
"text": [
|
| 62 |
"<class 'pandas.core.frame.DataFrame'>\n",
|
| 63 |
+
"RangeIndex: 95550 entries, 0 to 95549\n",
|
| 64 |
"Data columns (total 19 columns):\n",
|
| 65 |
" # Column Non-Null Count Dtype \n",
|
| 66 |
"--- ------ -------------- ----- \n",
|
| 67 |
+
" 0 trader_address 95550 non-null object \n",
|
| 68 |
+
" 1 trade_id 95550 non-null object \n",
|
| 69 |
+
" 2 creation_timestamp 95550 non-null datetime64[ns, UTC]\n",
|
| 70 |
+
" 3 title 95550 non-null object \n",
|
| 71 |
+
" 4 market_status 95550 non-null object \n",
|
| 72 |
+
" 5 collateral_amount 95550 non-null float64 \n",
|
| 73 |
+
" 6 outcome_index 95550 non-null object \n",
|
| 74 |
+
" 7 trade_fee_amount 95550 non-null float64 \n",
|
| 75 |
+
" 8 outcomes_tokens_traded 95550 non-null float64 \n",
|
| 76 |
+
" 9 current_answer 95550 non-null int64 \n",
|
| 77 |
+
" 10 is_invalid 95550 non-null bool \n",
|
| 78 |
+
" 11 winning_trade 95550 non-null bool \n",
|
| 79 |
+
" 12 earnings 95550 non-null float64 \n",
|
| 80 |
+
" 13 redeemed 95550 non-null bool \n",
|
| 81 |
+
" 14 redeemed_amount 95550 non-null float64 \n",
|
| 82 |
+
" 15 num_mech_calls 95550 non-null int64 \n",
|
| 83 |
+
" 16 mech_fee_amount 95550 non-null float64 \n",
|
| 84 |
+
" 17 net_earnings 95550 non-null float64 \n",
|
| 85 |
+
" 18 roi 95550 non-null float64 \n",
|
| 86 |
"dtypes: bool(3), datetime64[ns, UTC](1), float64(8), int64(2), object(5)\n",
|
| 87 |
+
"memory usage: 11.9+ MB\n"
|
| 88 |
]
|
| 89 |
}
|
| 90 |
],
|
|
|
|
| 94 |
},
|
| 95 |
{
|
| 96 |
"cell_type": "code",
|
| 97 |
+
"execution_count": 5,
|
| 98 |
"metadata": {},
|
| 99 |
"outputs": [
|
| 100 |
{
|
|
|
|
| 103 |
"Timestamp('2023-07-12 15:17:25+0000', tz='UTC')"
|
| 104 |
]
|
| 105 |
},
|
| 106 |
+
"execution_count": 5,
|
| 107 |
"metadata": {},
|
| 108 |
"output_type": "execute_result"
|
| 109 |
}
|
|
|
|
| 112 |
"all_trades.creation_timestamp.min()"
|
| 113 |
]
|
| 114 |
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": 6,
|
| 118 |
+
"metadata": {},
|
| 119 |
+
"outputs": [
|
| 120 |
+
{
|
| 121 |
+
"data": {
|
| 122 |
+
"text/plain": [
|
| 123 |
+
"Timestamp('2024-05-27 02:13:05+0000', tz='UTC')"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
"execution_count": 6,
|
| 127 |
+
"metadata": {},
|
| 128 |
+
"output_type": "execute_result"
|
| 129 |
+
}
|
| 130 |
+
],
|
| 131 |
+
"source": [
|
| 132 |
+
"all_trades.creation_timestamp.max()"
|
| 133 |
+
]
|
| 134 |
+
},
|
| 135 |
{
|
| 136 |
"cell_type": "code",
|
| 137 |
"execution_count": 4,
|
|
|
|
| 2383 |
"claude_prediction_online = claude_prediction_online[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 2384 |
"claude_prediction_online = claude_prediction_online.sort_values(by='request_month_year_week')\n",
|
| 2385 |
"\n",
|
| 2386 |
+
"claude_prediction_online.head()"
|
| 2387 |
]
|
| 2388 |
},
|
| 2389 |
{
|
|
|
|
| 2514 |
"claude_prediction_offline = claude_prediction_offline[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 2515 |
"claude_prediction_offline = claude_prediction_offline.sort_values(by='request_month_year_week')\n",
|
| 2516 |
"\n",
|
| 2517 |
+
"claude_prediction_offline.head()"
|
| 2518 |
]
|
| 2519 |
},
|
| 2520 |
{
|
|
|
|
| 2757 |
"prediction_online = prediction_online[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 2758 |
"prediction_online = prediction_online.sort_values(by='request_month_year_week')\n",
|
| 2759 |
"\n",
|
| 2760 |
+
"prediction_online.head()"
|
| 2761 |
]
|
| 2762 |
},
|
| 2763 |
{
|
|
|
|
| 3388 |
"prediction_online_sme = prediction_online_sme[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 3389 |
"prediction_online_sme = prediction_online_sme.sort_values(by='request_month_year_week')\n",
|
| 3390 |
"\n",
|
| 3391 |
+
"prediction_online_sme.head()"
|
| 3392 |
]
|
| 3393 |
},
|
| 3394 |
{
|
|
|
|
| 3491 |
"prediction_request_rag = prediction_request_rag[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 3492 |
"prediction_request_rag = prediction_request_rag.sort_values(by='request_month_year_week')\n",
|
| 3493 |
"\n",
|
| 3494 |
+
"prediction_request_rag.head()"
|
| 3495 |
]
|
| 3496 |
},
|
| 3497 |
{
|
|
|
|
| 3759 |
"prediction_url_cot_claude = prediction_url_cot_claude[['request_month_year_week', 'win_perc', 'total_request']]\n",
|
| 3760 |
"prediction_url_cot_claude = prediction_url_cot_claude.sort_values(by='request_month_year_week')\n",
|
| 3761 |
"\n",
|
| 3762 |
+
"prediction_url_cot_claude.head()"
|
| 3763 |
]
|
| 3764 |
},
|
| 3765 |
{
|