Commit
·
b4a0040
1
Parent(s):
7208a5f
proposal of daily info graphs
Browse files- app.py +83 -9
- data/daily_info.parquet +3 -0
- notebooks/daily_data.ipynb +430 -0
- scripts/daily_data.py +89 -0
- scripts/get_mech_info.py +8 -10
- scripts/profitability.py +25 -13
- scripts/pull_data.py +3 -3
- tabs/daily_graphs.py +215 -0
- tabs/metrics.py +9 -2
- tabs/trades.py +1 -0
app.py
CHANGED
|
@@ -18,8 +18,10 @@ from tabs.staking import plot_staking_trades_per_market_by_week
|
|
| 18 |
|
| 19 |
from tabs.metrics import (
|
| 20 |
trade_metric_choices,
|
|
|
|
| 21 |
tool_metric_choices,
|
| 22 |
default_trade_metric,
|
|
|
|
| 23 |
default_tool_metric,
|
| 24 |
plot_trade_metrics,
|
| 25 |
get_trade_metrics_text,
|
|
@@ -51,6 +53,8 @@ from tabs.error import (
|
|
| 51 |
get_error_data_overall_by_market,
|
| 52 |
plot_tool_error_data_by_market,
|
| 53 |
)
|
|
|
|
|
|
|
| 54 |
from tabs.about import about_olas_predict, about_this_dashboard
|
| 55 |
import matplotlib.pyplot as plt
|
| 56 |
from scripts.utils import INC_TOOLS
|
|
@@ -108,7 +112,13 @@ def get_all_data():
|
|
| 108 |
Get all data from the tools.parquet, tools_accuracy and trades parquet files
|
| 109 |
"""
|
| 110 |
logger.info("Getting all data")
|
|
|
|
| 111 |
con = duckdb.connect(":memory:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
# Query to fetch invalid trades data
|
| 114 |
query4 = f"""
|
|
@@ -141,14 +151,16 @@ def get_all_data():
|
|
| 141 |
|
| 142 |
con.close()
|
| 143 |
|
| 144 |
-
return df1, df2, df3, df4
|
| 145 |
|
| 146 |
|
| 147 |
def prepare_data():
|
| 148 |
"""
|
| 149 |
Prepare the data for the dashboard
|
| 150 |
"""
|
| 151 |
-
tools_df, trades_df, tools_accuracy_info, invalid_trades =
|
|
|
|
|
|
|
| 152 |
print(trades_df.info())
|
| 153 |
|
| 154 |
tools_df = prepare_tools(tools_df)
|
|
@@ -162,17 +174,17 @@ def prepare_data():
|
|
| 162 |
invalid_trades["creation_timestamp"]
|
| 163 |
)
|
| 164 |
invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date
|
| 165 |
-
|
| 166 |
# discovering outliers for ROI
|
| 167 |
outliers = trades_df.loc[trades_df["roi"] >= 1000]
|
| 168 |
if len(outliers) > 0:
|
| 169 |
outliers.to_parquet("./data/outliers.parquet")
|
| 170 |
trades_df = trades_df.loc[trades_df["roi"] < 1000]
|
| 171 |
|
| 172 |
-
return tools_df, trades_df, tools_accuracy_info, invalid_trades
|
| 173 |
|
| 174 |
|
| 175 |
-
tools_df, trades_df, tools_accuracy_info, invalid_trades = prepare_data()
|
| 176 |
|
| 177 |
|
| 178 |
demo = gr.Blocks()
|
|
@@ -194,7 +206,7 @@ with demo:
|
|
| 194 |
)
|
| 195 |
|
| 196 |
with gr.Tabs():
|
| 197 |
-
with gr.TabItem("🔥Trades Dashboard"):
|
| 198 |
with gr.Row():
|
| 199 |
gr.Markdown("# Trend of weekly trades")
|
| 200 |
with gr.Row():
|
|
@@ -204,7 +216,9 @@ with demo:
|
|
| 204 |
|
| 205 |
with gr.Row():
|
| 206 |
with gr.Column(scale=1):
|
| 207 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 208 |
agent_winning_trades = (
|
| 209 |
integrated_plot_winning_trades_per_market_by_week_v2(
|
| 210 |
trades_df=trades_df, trader_filter="agent"
|
|
@@ -253,7 +267,7 @@ with demo:
|
|
| 253 |
|
| 254 |
# Agentic traders graph
|
| 255 |
with gr.Row():
|
| 256 |
-
gr.Markdown("# Weekly trading metrics for trades coming from Agents")
|
| 257 |
with gr.Row():
|
| 258 |
trade_a_details_selector = gr.Dropdown(
|
| 259 |
label="Select a trade metric",
|
|
@@ -308,7 +322,6 @@ with demo:
|
|
| 308 |
trade_details_text = get_trade_metrics_text()
|
| 309 |
|
| 310 |
def update_na_trade_details(trade_detail, trade_details_plot):
|
| 311 |
-
print(f"user selected option= {trade_detail}")
|
| 312 |
new_a_plot = plot_trade_metrics(
|
| 313 |
metric_name=trade_detail,
|
| 314 |
trades_df=trades_df,
|
|
@@ -321,6 +334,67 @@ with demo:
|
|
| 321 |
inputs=[trade_na_details_selector, na_trade_details_plot],
|
| 322 |
outputs=[na_trade_details_plot],
|
| 323 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
with gr.TabItem("🔒 Staking traders"):
|
| 326 |
with gr.Row():
|
|
|
|
| 18 |
|
| 19 |
from tabs.metrics import (
|
| 20 |
trade_metric_choices,
|
| 21 |
+
trade_daily_metric_choices,
|
| 22 |
tool_metric_choices,
|
| 23 |
default_trade_metric,
|
| 24 |
+
default_daily_metric,
|
| 25 |
default_tool_metric,
|
| 26 |
plot_trade_metrics,
|
| 27 |
get_trade_metrics_text,
|
|
|
|
| 53 |
get_error_data_overall_by_market,
|
| 54 |
plot_tool_error_data_by_market,
|
| 55 |
)
|
| 56 |
+
|
| 57 |
+
from tabs.daily_graphs import get_current_week_data, plot_daily_metrics
|
| 58 |
from tabs.about import about_olas_predict, about_this_dashboard
|
| 59 |
import matplotlib.pyplot as plt
|
| 60 |
from scripts.utils import INC_TOOLS
|
|
|
|
| 112 |
Get all data from the tools.parquet, tools_accuracy and trades parquet files
|
| 113 |
"""
|
| 114 |
logger.info("Getting all data")
|
| 115 |
+
# Query to fetch daily live data
|
| 116 |
con = duckdb.connect(":memory:")
|
| 117 |
+
query5 = f"""
|
| 118 |
+
SELECT *
|
| 119 |
+
FROM read_parquet('./data/daily_info.parquet')
|
| 120 |
+
"""
|
| 121 |
+
df5 = con.execute(query5).fetchdf()
|
| 122 |
|
| 123 |
# Query to fetch invalid trades data
|
| 124 |
query4 = f"""
|
|
|
|
| 151 |
|
| 152 |
con.close()
|
| 153 |
|
| 154 |
+
return df1, df2, df3, df4, df5
|
| 155 |
|
| 156 |
|
| 157 |
def prepare_data():
|
| 158 |
"""
|
| 159 |
Prepare the data for the dashboard
|
| 160 |
"""
|
| 161 |
+
tools_df, trades_df, tools_accuracy_info, invalid_trades, daily_info = (
|
| 162 |
+
get_all_data()
|
| 163 |
+
)
|
| 164 |
print(trades_df.info())
|
| 165 |
|
| 166 |
tools_df = prepare_tools(tools_df)
|
|
|
|
| 174 |
invalid_trades["creation_timestamp"]
|
| 175 |
)
|
| 176 |
invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date
|
| 177 |
+
daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
|
| 178 |
# discovering outliers for ROI
|
| 179 |
outliers = trades_df.loc[trades_df["roi"] >= 1000]
|
| 180 |
if len(outliers) > 0:
|
| 181 |
outliers.to_parquet("./data/outliers.parquet")
|
| 182 |
trades_df = trades_df.loc[trades_df["roi"] < 1000]
|
| 183 |
|
| 184 |
+
return tools_df, trades_df, tools_accuracy_info, invalid_trades, daily_info
|
| 185 |
|
| 186 |
|
| 187 |
+
tools_df, trades_df, tools_accuracy_info, invalid_trades, daily_info = prepare_data()
|
| 188 |
|
| 189 |
|
| 190 |
demo = gr.Blocks()
|
|
|
|
| 206 |
)
|
| 207 |
|
| 208 |
with gr.Tabs():
|
| 209 |
+
with gr.TabItem("🔥 Weekly Trades Dashboard"):
|
| 210 |
with gr.Row():
|
| 211 |
gr.Markdown("# Trend of weekly trades")
|
| 212 |
with gr.Row():
|
|
|
|
| 216 |
|
| 217 |
with gr.Row():
|
| 218 |
with gr.Column(scale=1):
|
| 219 |
+
gr.Markdown(
|
| 220 |
+
"# Weekly percentage of winning for 🤖 Agent based trades"
|
| 221 |
+
)
|
| 222 |
agent_winning_trades = (
|
| 223 |
integrated_plot_winning_trades_per_market_by_week_v2(
|
| 224 |
trades_df=trades_df, trader_filter="agent"
|
|
|
|
| 267 |
|
| 268 |
# Agentic traders graph
|
| 269 |
with gr.Row():
|
| 270 |
+
gr.Markdown("# Weekly trading metrics for trades coming from Agents 🤖")
|
| 271 |
with gr.Row():
|
| 272 |
trade_a_details_selector = gr.Dropdown(
|
| 273 |
label="Select a trade metric",
|
|
|
|
| 322 |
trade_details_text = get_trade_metrics_text()
|
| 323 |
|
| 324 |
def update_na_trade_details(trade_detail, trade_details_plot):
|
|
|
|
| 325 |
new_a_plot = plot_trade_metrics(
|
| 326 |
metric_name=trade_detail,
|
| 327 |
trades_df=trades_df,
|
|
|
|
| 334 |
inputs=[trade_na_details_selector, na_trade_details_plot],
|
| 335 |
outputs=[na_trade_details_plot],
|
| 336 |
)
|
| 337 |
+
with gr.TabItem("📅 Daily trades dashboard (WIP)"):
|
| 338 |
+
current_week_trades = get_current_week_data(trades_df=trades_df)
|
| 339 |
+
live_trades_current_week = get_current_week_data(trades_df=daily_info)
|
| 340 |
+
with gr.Row():
|
| 341 |
+
gr.Markdown("# Daily live metrics for all trades")
|
| 342 |
+
with gr.Row():
|
| 343 |
+
trade_live_details_selector = gr.Dropdown(
|
| 344 |
+
label="Select a daily live metric",
|
| 345 |
+
choices=trade_daily_metric_choices,
|
| 346 |
+
value=default_daily_metric,
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
with gr.Row():
|
| 350 |
+
with gr.Column(scale=3):
|
| 351 |
+
trade_live_details_plot = plot_daily_metrics(
|
| 352 |
+
metric_name=default_daily_metric,
|
| 353 |
+
trades_df=live_trades_current_week,
|
| 354 |
+
)
|
| 355 |
+
with gr.Column(scale=1):
|
| 356 |
+
trade_details_text = get_trade_metrics_text()
|
| 357 |
+
|
| 358 |
+
def update_trade_live_details(trade_detail, trade_live_details_plot):
|
| 359 |
+
new_a_plot = plot_daily_metrics(
|
| 360 |
+
metric_name=trade_detail, trades_df=live_trades_current_week
|
| 361 |
+
)
|
| 362 |
+
return new_a_plot
|
| 363 |
+
|
| 364 |
+
trade_live_details_selector.change(
|
| 365 |
+
update_trade_live_details,
|
| 366 |
+
inputs=[trade_live_details_selector, trade_live_details_plot],
|
| 367 |
+
outputs=[trade_live_details_plot],
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
with gr.Row():
|
| 371 |
+
gr.Markdown("# Daily profitability metrics available for all trades")
|
| 372 |
+
with gr.Row():
|
| 373 |
+
trade_daily_details_selector = gr.Dropdown(
|
| 374 |
+
label="Select a daily trade metric",
|
| 375 |
+
choices=trade_metric_choices,
|
| 376 |
+
value=default_trade_metric,
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
with gr.Row():
|
| 380 |
+
with gr.Column(scale=3):
|
| 381 |
+
trade_daily_details_plot = plot_daily_metrics(
|
| 382 |
+
metric_name=default_trade_metric, trades_df=current_week_trades
|
| 383 |
+
)
|
| 384 |
+
with gr.Column(scale=1):
|
| 385 |
+
trade_details_text = get_trade_metrics_text()
|
| 386 |
+
|
| 387 |
+
def update_trade_daily_details(trade_detail, trade_daily_details_plot):
|
| 388 |
+
new_a_plot = plot_daily_metrics(
|
| 389 |
+
metric_name=trade_detail, trades_df=current_week_trades
|
| 390 |
+
)
|
| 391 |
+
return new_a_plot
|
| 392 |
+
|
| 393 |
+
trade_daily_details_selector.change(
|
| 394 |
+
update_trade_daily_details,
|
| 395 |
+
inputs=[trade_daily_details_selector, trade_daily_details_plot],
|
| 396 |
+
outputs=[trade_daily_details_plot],
|
| 397 |
+
)
|
| 398 |
|
| 399 |
with gr.TabItem("🔒 Staking traders"):
|
| 400 |
with gr.Row():
|
data/daily_info.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f41fdb6fc36cf8cb28980bca049de6b4fa986a9800176e269a5259a7e744c514
|
| 3 |
+
size 251792
|
notebooks/daily_data.ipynb
ADDED
|
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import pandas as pd"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": 2,
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": 3,
|
| 24 |
+
"metadata": {},
|
| 25 |
+
"outputs": [
|
| 26 |
+
{
|
| 27 |
+
"data": {
|
| 28 |
+
"text/plain": [
|
| 29 |
+
"Timestamp('2024-11-23 01:38:25+0000', tz='UTC')"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
"execution_count": 3,
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"output_type": "execute_result"
|
| 35 |
+
}
|
| 36 |
+
],
|
| 37 |
+
"source": [
|
| 38 |
+
"max(all_trades.creation_timestamp)"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": 4,
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"outputs": [
|
| 46 |
+
{
|
| 47 |
+
"data": {
|
| 48 |
+
"text/plain": [
|
| 49 |
+
"Timestamp('2024-09-22 00:02:05+0000', tz='UTC')"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
"execution_count": 4,
|
| 53 |
+
"metadata": {},
|
| 54 |
+
"output_type": "execute_result"
|
| 55 |
+
}
|
| 56 |
+
],
|
| 57 |
+
"source": [
|
| 58 |
+
"min(all_trades.creation_timestamp)"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": 3,
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": [
|
| 67 |
+
"new_trades = pd.read_parquet('../data/new_fpmmTrades.parquet')"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": 11,
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"outputs": [
|
| 75 |
+
{
|
| 76 |
+
"name": "stdout",
|
| 77 |
+
"output_type": "stream",
|
| 78 |
+
"text": [
|
| 79 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
| 80 |
+
"RangeIndex: 3798 entries, 0 to 3797\n",
|
| 81 |
+
"Data columns (total 24 columns):\n",
|
| 82 |
+
" # Column Non-Null Count Dtype \n",
|
| 83 |
+
"--- ------ -------------- ----- \n",
|
| 84 |
+
" 0 collateralAmount 3798 non-null object\n",
|
| 85 |
+
" 1 collateralAmountUSD 3798 non-null object\n",
|
| 86 |
+
" 2 collateralToken 3798 non-null object\n",
|
| 87 |
+
" 3 creationTimestamp 3798 non-null object\n",
|
| 88 |
+
" 4 trader_address 3798 non-null object\n",
|
| 89 |
+
" 5 feeAmount 3798 non-null object\n",
|
| 90 |
+
" 6 id 3798 non-null object\n",
|
| 91 |
+
" 7 oldOutcomeTokenMarginalPrice 3798 non-null object\n",
|
| 92 |
+
" 8 outcomeIndex 3798 non-null object\n",
|
| 93 |
+
" 9 outcomeTokenMarginalPrice 3798 non-null object\n",
|
| 94 |
+
" 10 outcomeTokensTraded 3798 non-null object\n",
|
| 95 |
+
" 11 title 3798 non-null object\n",
|
| 96 |
+
" 12 transactionHash 3798 non-null object\n",
|
| 97 |
+
" 13 type 3798 non-null object\n",
|
| 98 |
+
" 14 market_creator 3798 non-null object\n",
|
| 99 |
+
" 15 fpmm.answerFinalizedTimestamp 0 non-null object\n",
|
| 100 |
+
" 16 fpmm.arbitrationOccurred 3798 non-null bool \n",
|
| 101 |
+
" 17 fpmm.currentAnswer 0 non-null object\n",
|
| 102 |
+
" 18 fpmm.id 3798 non-null object\n",
|
| 103 |
+
" 19 fpmm.isPendingArbitration 3798 non-null bool \n",
|
| 104 |
+
" 20 fpmm.openingTimestamp 3798 non-null object\n",
|
| 105 |
+
" 21 fpmm.outcomes 3798 non-null object\n",
|
| 106 |
+
" 22 fpmm.title 3798 non-null object\n",
|
| 107 |
+
" 23 fpmm.condition.id 3798 non-null object\n",
|
| 108 |
+
"dtypes: bool(2), object(22)\n",
|
| 109 |
+
"memory usage: 660.3+ KB\n"
|
| 110 |
+
]
|
| 111 |
+
}
|
| 112 |
+
],
|
| 113 |
+
"source": [
|
| 114 |
+
"new_trades.info()"
|
| 115 |
+
]
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"cell_type": "code",
|
| 119 |
+
"execution_count": 12,
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [
|
| 122 |
+
{
|
| 123 |
+
"data": {
|
| 124 |
+
"text/plain": [
|
| 125 |
+
"3798"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
"execution_count": 12,
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"output_type": "execute_result"
|
| 131 |
+
}
|
| 132 |
+
],
|
| 133 |
+
"source": [
|
| 134 |
+
"len(new_trades.id.unique())"
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"cell_type": "code",
|
| 139 |
+
"execution_count": 4,
|
| 140 |
+
"metadata": {},
|
| 141 |
+
"outputs": [
|
| 142 |
+
{
|
| 143 |
+
"data": {
|
| 144 |
+
"text/plain": [
|
| 145 |
+
"Index(['collateralAmount', 'collateralAmountUSD', 'collateralToken',\n",
|
| 146 |
+
" 'creationTimestamp', 'trader_address', 'feeAmount', 'id',\n",
|
| 147 |
+
" 'oldOutcomeTokenMarginalPrice', 'outcomeIndex',\n",
|
| 148 |
+
" 'outcomeTokenMarginalPrice', 'outcomeTokensTraded', 'title',\n",
|
| 149 |
+
" 'transactionHash', 'type', 'market_creator',\n",
|
| 150 |
+
" 'fpmm.answerFinalizedTimestamp', 'fpmm.arbitrationOccurred',\n",
|
| 151 |
+
" 'fpmm.currentAnswer', 'fpmm.id', 'fpmm.isPendingArbitration',\n",
|
| 152 |
+
" 'fpmm.openingTimestamp', 'fpmm.outcomes', 'fpmm.title',\n",
|
| 153 |
+
" 'fpmm.condition.id'],\n",
|
| 154 |
+
" dtype='object')"
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
"execution_count": 4,
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"output_type": "execute_result"
|
| 160 |
+
}
|
| 161 |
+
],
|
| 162 |
+
"source": [
|
| 163 |
+
"new_trades.columns"
|
| 164 |
+
]
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"cell_type": "code",
|
| 168 |
+
"execution_count": 6,
|
| 169 |
+
"metadata": {},
|
| 170 |
+
"outputs": [
|
| 171 |
+
{
|
| 172 |
+
"data": {
|
| 173 |
+
"text/plain": [
|
| 174 |
+
"'1732609530'"
|
| 175 |
+
]
|
| 176 |
+
},
|
| 177 |
+
"execution_count": 6,
|
| 178 |
+
"metadata": {},
|
| 179 |
+
"output_type": "execute_result"
|
| 180 |
+
}
|
| 181 |
+
],
|
| 182 |
+
"source": [
|
| 183 |
+
"max(new_trades.creationTimestamp)"
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"cell_type": "code",
|
| 188 |
+
"execution_count": 13,
|
| 189 |
+
"metadata": {},
|
| 190 |
+
"outputs": [],
|
| 191 |
+
"source": [
|
| 192 |
+
"old_trades = pd.read_parquet('../data/fpmmTrades.parquet')"
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"cell_type": "code",
|
| 197 |
+
"execution_count": 14,
|
| 198 |
+
"metadata": {},
|
| 199 |
+
"outputs": [
|
| 200 |
+
{
|
| 201 |
+
"data": {
|
| 202 |
+
"text/plain": [
|
| 203 |
+
"'1732609530'"
|
| 204 |
+
]
|
| 205 |
+
},
|
| 206 |
+
"execution_count": 14,
|
| 207 |
+
"metadata": {},
|
| 208 |
+
"output_type": "execute_result"
|
| 209 |
+
}
|
| 210 |
+
],
|
| 211 |
+
"source": [
|
| 212 |
+
"max(old_trades.creationTimestamp)"
|
| 213 |
+
]
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"cell_type": "code",
|
| 217 |
+
"execution_count": 25,
|
| 218 |
+
"metadata": {},
|
| 219 |
+
"outputs": [],
|
| 220 |
+
"source": [
|
| 221 |
+
"all_trades_before = pd.read_parquet('../data/daily_info.parquet')"
|
| 222 |
+
]
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "code",
|
| 226 |
+
"execution_count": 26,
|
| 227 |
+
"metadata": {},
|
| 228 |
+
"outputs": [
|
| 229 |
+
{
|
| 230 |
+
"name": "stdout",
|
| 231 |
+
"output_type": "stream",
|
| 232 |
+
"text": [
|
| 233 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
| 234 |
+
"RangeIndex: 3882 entries, 0 to 3881\n",
|
| 235 |
+
"Data columns (total 21 columns):\n",
|
| 236 |
+
" # Column Non-Null Count Dtype \n",
|
| 237 |
+
"--- ------ -------------- ----- \n",
|
| 238 |
+
" 0 trader_address 3882 non-null object \n",
|
| 239 |
+
" 1 market_creator 3882 non-null object \n",
|
| 240 |
+
" 2 trade_id 3882 non-null object \n",
|
| 241 |
+
" 3 creation_timestamp 3882 non-null datetime64[ns, UTC]\n",
|
| 242 |
+
" 4 title 3882 non-null object \n",
|
| 243 |
+
" 5 market_status 3882 non-null object \n",
|
| 244 |
+
" 6 collateral_amount 3882 non-null float64 \n",
|
| 245 |
+
" 7 outcome_index 3882 non-null object \n",
|
| 246 |
+
" 8 trade_fee_amount 3882 non-null float64 \n",
|
| 247 |
+
" 9 outcomes_tokens_traded 3882 non-null float64 \n",
|
| 248 |
+
" 10 current_answer 0 non-null object \n",
|
| 249 |
+
" 11 is_invalid 3882 non-null bool \n",
|
| 250 |
+
" 12 winning_trade 0 non-null object \n",
|
| 251 |
+
" 13 earnings 3882 non-null float64 \n",
|
| 252 |
+
" 14 redeemed 3882 non-null bool \n",
|
| 253 |
+
" 15 redeemed_amount 3882 non-null int64 \n",
|
| 254 |
+
" 16 num_mech_calls 3882 non-null int64 \n",
|
| 255 |
+
" 17 mech_fee_amount 3882 non-null float64 \n",
|
| 256 |
+
" 18 net_earnings 3882 non-null float64 \n",
|
| 257 |
+
" 19 roi 3882 non-null float64 \n",
|
| 258 |
+
" 20 staking 3882 non-null object \n",
|
| 259 |
+
"dtypes: bool(2), datetime64[ns, UTC](1), float64(7), int64(2), object(9)\n",
|
| 260 |
+
"memory usage: 583.9+ KB\n"
|
| 261 |
+
]
|
| 262 |
+
}
|
| 263 |
+
],
|
| 264 |
+
"source": [
|
| 265 |
+
"all_trades_before.info()"
|
| 266 |
+
]
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"cell_type": "code",
|
| 270 |
+
"execution_count": 27,
|
| 271 |
+
"metadata": {},
|
| 272 |
+
"outputs": [
|
| 273 |
+
{
|
| 274 |
+
"data": {
|
| 275 |
+
"text/plain": [
|
| 276 |
+
"Index(['trader_address', 'market_creator', 'trade_id', 'creation_timestamp',\n",
|
| 277 |
+
" 'title', 'market_status', 'collateral_amount', 'outcome_index',\n",
|
| 278 |
+
" 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
|
| 279 |
+
" 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
|
| 280 |
+
" 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
|
| 281 |
+
" 'roi', 'staking'],\n",
|
| 282 |
+
" dtype='object')"
|
| 283 |
+
]
|
| 284 |
+
},
|
| 285 |
+
"execution_count": 27,
|
| 286 |
+
"metadata": {},
|
| 287 |
+
"output_type": "execute_result"
|
| 288 |
+
}
|
| 289 |
+
],
|
| 290 |
+
"source": [
|
| 291 |
+
"all_trades_before.columns"
|
| 292 |
+
]
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"cell_type": "code",
|
| 296 |
+
"execution_count": 23,
|
| 297 |
+
"metadata": {},
|
| 298 |
+
"outputs": [
|
| 299 |
+
{
|
| 300 |
+
"data": {
|
| 301 |
+
"text/plain": [
|
| 302 |
+
"Timestamp('2024-11-26 10:19:30+0000', tz='UTC')"
|
| 303 |
+
]
|
| 304 |
+
},
|
| 305 |
+
"execution_count": 23,
|
| 306 |
+
"metadata": {},
|
| 307 |
+
"output_type": "execute_result"
|
| 308 |
+
}
|
| 309 |
+
],
|
| 310 |
+
"source": [
|
| 311 |
+
"max(all_trades_before.creation_timestamp)"
|
| 312 |
+
]
|
| 313 |
+
},
|
| 314 |
+
{
|
| 315 |
+
"cell_type": "code",
|
| 316 |
+
"execution_count": 28,
|
| 317 |
+
"metadata": {},
|
| 318 |
+
"outputs": [
|
| 319 |
+
{
|
| 320 |
+
"data": {
|
| 321 |
+
"text/plain": [
|
| 322 |
+
"staking\n",
|
| 323 |
+
"non_agent 2376\n",
|
| 324 |
+
"quickstart 672\n",
|
| 325 |
+
"pearl 502\n",
|
| 326 |
+
"non_staking 332\n",
|
| 327 |
+
"Name: count, dtype: int64"
|
| 328 |
+
]
|
| 329 |
+
},
|
| 330 |
+
"execution_count": 28,
|
| 331 |
+
"metadata": {},
|
| 332 |
+
"output_type": "execute_result"
|
| 333 |
+
}
|
| 334 |
+
],
|
| 335 |
+
"source": [
|
| 336 |
+
"all_trades_before.staking.value_counts()"
|
| 337 |
+
]
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"cell_type": "code",
|
| 341 |
+
"execution_count": 7,
|
| 342 |
+
"metadata": {},
|
| 343 |
+
"outputs": [],
|
| 344 |
+
"source": [
|
| 345 |
+
"all_trades_df = pd.read_parquet('../json_data/all_trades_df.parquet')"
|
| 346 |
+
]
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"cell_type": "code",
|
| 350 |
+
"execution_count": 8,
|
| 351 |
+
"metadata": {},
|
| 352 |
+
"outputs": [
|
| 353 |
+
{
|
| 354 |
+
"data": {
|
| 355 |
+
"text/plain": [
|
| 356 |
+
"Index(['trader_address', 'market_creator', 'trade_id', 'creation_timestamp',\n",
|
| 357 |
+
" 'title', 'market_status', 'collateral_amount', 'outcome_index',\n",
|
| 358 |
+
" 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
|
| 359 |
+
" 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
|
| 360 |
+
" 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
|
| 361 |
+
" 'roi', 'staking', 'nr_mech_calls'],\n",
|
| 362 |
+
" dtype='object')"
|
| 363 |
+
]
|
| 364 |
+
},
|
| 365 |
+
"execution_count": 8,
|
| 366 |
+
"metadata": {},
|
| 367 |
+
"output_type": "execute_result"
|
| 368 |
+
}
|
| 369 |
+
],
|
| 370 |
+
"source": [
|
| 371 |
+
"all_trades_df.columns"
|
| 372 |
+
]
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"cell_type": "code",
|
| 376 |
+
"execution_count": 9,
|
| 377 |
+
"metadata": {},
|
| 378 |
+
"outputs": [
|
| 379 |
+
{
|
| 380 |
+
"data": {
|
| 381 |
+
"text/plain": [
|
| 382 |
+
"Timestamp('2024-11-23 01:38:25+0000', tz='UTC')"
|
| 383 |
+
]
|
| 384 |
+
},
|
| 385 |
+
"execution_count": 9,
|
| 386 |
+
"metadata": {},
|
| 387 |
+
"output_type": "execute_result"
|
| 388 |
+
}
|
| 389 |
+
],
|
| 390 |
+
"source": [
|
| 391 |
+
"max(all_trades_df.creation_timestamp)"
|
| 392 |
+
]
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"cell_type": "code",
|
| 396 |
+
"execution_count": null,
|
| 397 |
+
"metadata": {},
|
| 398 |
+
"outputs": [],
|
| 399 |
+
"source": []
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"cell_type": "code",
|
| 403 |
+
"execution_count": null,
|
| 404 |
+
"metadata": {},
|
| 405 |
+
"outputs": [],
|
| 406 |
+
"source": []
|
| 407 |
+
}
|
| 408 |
+
],
|
| 409 |
+
"metadata": {
|
| 410 |
+
"kernelspec": {
|
| 411 |
+
"display_name": "hf_dashboards",
|
| 412 |
+
"language": "python",
|
| 413 |
+
"name": "python3"
|
| 414 |
+
},
|
| 415 |
+
"language_info": {
|
| 416 |
+
"codemirror_mode": {
|
| 417 |
+
"name": "ipython",
|
| 418 |
+
"version": 3
|
| 419 |
+
},
|
| 420 |
+
"file_extension": ".py",
|
| 421 |
+
"mimetype": "text/x-python",
|
| 422 |
+
"name": "python",
|
| 423 |
+
"nbconvert_exporter": "python",
|
| 424 |
+
"pygments_lexer": "ipython3",
|
| 425 |
+
"version": "3.12.2"
|
| 426 |
+
}
|
| 427 |
+
},
|
| 428 |
+
"nbformat": 4,
|
| 429 |
+
"nbformat_minor": 2
|
| 430 |
+
}
|
scripts/daily_data.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from utils import get_question, current_answer, RPC, measure_execution_time
|
| 3 |
+
from markets import (
|
| 4 |
+
etl as mkt_etl,
|
| 5 |
+
DEFAULT_FILENAME as MARKETS_FILENAME,
|
| 6 |
+
)
|
| 7 |
+
from get_mech_info import (
|
| 8 |
+
get_mech_events_since_last_run,
|
| 9 |
+
update_json_files,
|
| 10 |
+
)
|
| 11 |
+
from pull_data import DATA_DIR, update_json_files, updating_timestamps
|
| 12 |
+
from tools import DEFAULT_FILENAME as TOOLS_FILENAME, generate_tools_file
|
| 13 |
+
from profitability import (
|
| 14 |
+
run_profitability_analysis,
|
| 15 |
+
analyse_all_traders,
|
| 16 |
+
label_trades_by_staking,
|
| 17 |
+
)
|
| 18 |
+
from update_tools_accuracy import compute_tools_accuracy
|
| 19 |
+
import pandas as pd
|
| 20 |
+
|
| 21 |
+
logging.basicConfig(level=logging.INFO)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def prepare_live_metrics(
|
| 25 |
+
tools_filename="new_tools.parquet", trades_filename="new_fpmmTrades.parquet"
|
| 26 |
+
):
|
| 27 |
+
fpmmTrades = pd.read_parquet(DATA_DIR / trades_filename)
|
| 28 |
+
tools = pd.read_parquet(DATA_DIR / tools_filename)
|
| 29 |
+
print("Analysing trades...")
|
| 30 |
+
all_trades_df = analyse_all_traders(fpmmTrades, tools, daily_info=True)
|
| 31 |
+
|
| 32 |
+
# staking label
|
| 33 |
+
label_trades_by_staking(all_trades_df)
|
| 34 |
+
|
| 35 |
+
# save into a separate file
|
| 36 |
+
all_trades_df.to_parquet(DATA_DIR / "daily_info.parquet", index=False)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@measure_execution_time
|
| 40 |
+
def daily_analysis():
|
| 41 |
+
"""Run daily analysis for the FPMMS project."""
|
| 42 |
+
rpc = RPC
|
| 43 |
+
# Run markets ETL
|
| 44 |
+
logging.info("Running markets ETL")
|
| 45 |
+
mkt_etl(MARKETS_FILENAME)
|
| 46 |
+
logging.info("Markets ETL completed")
|
| 47 |
+
|
| 48 |
+
# get only new data
|
| 49 |
+
latest_timestamp = get_mech_events_since_last_run()
|
| 50 |
+
if latest_timestamp == None:
|
| 51 |
+
print("Error while getting the mech events")
|
| 52 |
+
return
|
| 53 |
+
logging.info(f"Finished generating the mech json files from {latest_timestamp}")
|
| 54 |
+
|
| 55 |
+
# Run tools ETL
|
| 56 |
+
logging.info("Generate and parse the tools content")
|
| 57 |
+
# generate only new file
|
| 58 |
+
generate_tools_file("new_tools_info.json", "new_tools.parquet")
|
| 59 |
+
logging.info("Tools ETL completed")
|
| 60 |
+
|
| 61 |
+
# add_current_answer("new_tools.parquet")
|
| 62 |
+
|
| 63 |
+
# # Run profitability analysis
|
| 64 |
+
logging.info("Computing trading metrics")
|
| 65 |
+
run_profitability_analysis(
|
| 66 |
+
rpc=rpc,
|
| 67 |
+
tools_filename="new_tools.parquet",
|
| 68 |
+
trades_filename="new_fpmmTrades.parquet",
|
| 69 |
+
# from_timestamp=int(latest_timestamp.timestamp()),
|
| 70 |
+
from_timestamp=latest_timestamp,
|
| 71 |
+
merge=True,
|
| 72 |
+
)
|
| 73 |
+
logging.info("Profitability analysis completed")
|
| 74 |
+
|
| 75 |
+
# merge new json files with old json files
|
| 76 |
+
update_json_files()
|
| 77 |
+
|
| 78 |
+
try:
|
| 79 |
+
updating_timestamps(rpc, TOOLS_FILENAME)
|
| 80 |
+
except Exception as e:
|
| 81 |
+
logging.error("Error while updating timestamps of tools")
|
| 82 |
+
print(e)
|
| 83 |
+
|
| 84 |
+
compute_tools_accuracy()
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
if __name__ == "__main__":
|
| 88 |
+
daily_analysis()
|
| 89 |
+
prepare_live_metrics()
|
scripts/get_mech_info.py
CHANGED
|
@@ -143,14 +143,12 @@ def update_fpmmTrades_parquet(trades_filename: str) -> pd.DataFrame:
|
|
| 143 |
].astype(bool)
|
| 144 |
|
| 145 |
# Check for duplicates
|
| 146 |
-
print(f"Initial length before removing duplicates= {len(merge_df)}")
|
| 147 |
|
| 148 |
# Remove duplicates
|
| 149 |
# fpmm.outcomes is a numpy array
|
| 150 |
-
merge_df
|
| 151 |
-
|
| 152 |
-
)
|
| 153 |
-
print(f"Final length before removing duplicates= {len(merge_df)}")
|
| 154 |
|
| 155 |
# save the parquet file
|
| 156 |
merge_df.to_parquet(DATA_DIR / "fpmmTrades.parquet", index=False)
|
|
@@ -169,11 +167,11 @@ def update_all_trades_parquet(new_trades_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 169 |
merge_df = pd.concat([old_trades_df, new_trades_df], ignore_index=True)
|
| 170 |
|
| 171 |
# Check for duplicates
|
| 172 |
-
print(f"Initial length before removing duplicates= {len(merge_df)}")
|
| 173 |
|
| 174 |
# Remove duplicates
|
| 175 |
-
merge_df.drop_duplicates(inplace=True)
|
| 176 |
-
print(f"Final length
|
| 177 |
return merge_df
|
| 178 |
|
| 179 |
|
|
@@ -193,11 +191,11 @@ def update_tools_parquet(new_tools_filename: pd.DataFrame):
|
|
| 193 |
merge_df = pd.concat([old_tools_df, new_tools_df], ignore_index=True)
|
| 194 |
|
| 195 |
# Check for duplicates
|
| 196 |
-
print(f"Initial length before removing duplicates= {len(merge_df)}")
|
| 197 |
|
| 198 |
# Remove duplicates
|
| 199 |
merge_df.drop_duplicates(inplace=True)
|
| 200 |
-
print(f"Final length
|
| 201 |
|
| 202 |
# save the parquet file
|
| 203 |
merge_df.to_parquet(DATA_DIR / "tools.parquet", index=False)
|
|
|
|
| 143 |
].astype(bool)
|
| 144 |
|
| 145 |
# Check for duplicates
|
| 146 |
+
print(f"Initial length before removing duplicates in fpmmTrades= {len(merge_df)}")
|
| 147 |
|
| 148 |
# Remove duplicates
|
| 149 |
# fpmm.outcomes is a numpy array
|
| 150 |
+
merge_df.drop_duplicates("id", inplace=True)
|
| 151 |
+
print(f"Final length after removing duplicates in fpmmTrades= {len(merge_df)}")
|
|
|
|
|
|
|
| 152 |
|
| 153 |
# save the parquet file
|
| 154 |
merge_df.to_parquet(DATA_DIR / "fpmmTrades.parquet", index=False)
|
|
|
|
| 167 |
merge_df = pd.concat([old_trades_df, new_trades_df], ignore_index=True)
|
| 168 |
|
| 169 |
# Check for duplicates
|
| 170 |
+
print(f"Initial length before removing duplicates in all_trades= {len(merge_df)}")
|
| 171 |
|
| 172 |
# Remove duplicates
|
| 173 |
+
merge_df.drop_duplicates("trade_id", inplace=True)
|
| 174 |
+
print(f"Final length after removing duplicates in all_trades = {len(merge_df)}")
|
| 175 |
return merge_df
|
| 176 |
|
| 177 |
|
|
|
|
| 191 |
merge_df = pd.concat([old_tools_df, new_tools_df], ignore_index=True)
|
| 192 |
|
| 193 |
# Check for duplicates
|
| 194 |
+
print(f"Initial length before removing duplicates in tools= {len(merge_df)}")
|
| 195 |
|
| 196 |
# Remove duplicates
|
| 197 |
merge_df.drop_duplicates(inplace=True)
|
| 198 |
+
print(f"Final length after removing duplicates in tools= {len(merge_df)}")
|
| 199 |
|
| 200 |
# save the parquet file
|
| 201 |
merge_df.to_parquet(DATA_DIR / "tools.parquet", index=False)
|
scripts/profitability.py
CHANGED
|
@@ -257,7 +257,6 @@ def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
|
|
| 257 |
"""Returns whether the user has redeemed the position."""
|
| 258 |
user_positions = user_json["data"]["user"]["userPositions"]
|
| 259 |
condition_id = fpmmTrade["fpmm.condition.id"]
|
| 260 |
-
|
| 261 |
for position in user_positions:
|
| 262 |
position_condition_ids = position["position"]["conditionIds"]
|
| 263 |
balance = int(position["balance"])
|
|
@@ -372,9 +371,11 @@ def prepare_profitalibity_data(
|
|
| 372 |
|
| 373 |
def determine_market_status(trade, current_answer):
|
| 374 |
"""Determine the market status of a trade."""
|
| 375 |
-
if current_answer is np.nan and time.time() >= int(
|
|
|
|
|
|
|
| 376 |
return MarketState.PENDING
|
| 377 |
-
elif current_answer
|
| 378 |
return MarketState.OPEN
|
| 379 |
elif trade["fpmm.isPendingArbitration"]:
|
| 380 |
return MarketState.ARBITRATING
|
|
@@ -384,7 +385,10 @@ def determine_market_status(trade, current_answer):
|
|
| 384 |
|
| 385 |
|
| 386 |
def analyse_trader(
|
| 387 |
-
trader_address: str,
|
|
|
|
|
|
|
|
|
|
| 388 |
) -> pd.DataFrame:
|
| 389 |
"""Analyse a trader's trades"""
|
| 390 |
# Filter trades and tools for the given trader
|
|
@@ -406,10 +410,12 @@ def analyse_trader(
|
|
| 406 |
# Iterate over the trades
|
| 407 |
for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
|
| 408 |
try:
|
| 409 |
-
|
|
|
|
| 410 |
print(f"Skipping trade {i} because currentAnswer is NaN")
|
| 411 |
continue
|
| 412 |
# Parsing and computing shared values
|
|
|
|
| 413 |
creation_timestamp_utc = datetime.datetime.fromtimestamp(
|
| 414 |
int(trade["creationTimestamp"]), tz=datetime.timezone.utc
|
| 415 |
)
|
|
@@ -418,25 +424,29 @@ def analyse_trader(
|
|
| 418 |
outcome_tokens_traded = wei_to_unit(float(trade["outcomeTokensTraded"]))
|
| 419 |
earnings, winner_trade = (0, False)
|
| 420 |
redemption = _is_redeemed(user_json, trade)
|
| 421 |
-
current_answer =
|
| 422 |
market_creator = trade["market_creator"]
|
| 423 |
|
| 424 |
# Determine market status
|
| 425 |
market_status = determine_market_status(trade, current_answer)
|
| 426 |
|
| 427 |
# Skip non-closed markets
|
| 428 |
-
if market_status != MarketState.CLOSED:
|
| 429 |
print(
|
| 430 |
f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
|
| 431 |
)
|
| 432 |
continue
|
| 433 |
-
current_answer
|
|
|
|
| 434 |
|
| 435 |
# Compute invalidity
|
| 436 |
is_invalid = current_answer == INVALID_ANSWER
|
| 437 |
|
| 438 |
# Compute earnings and winner trade status
|
| 439 |
-
if
|
|
|
|
|
|
|
|
|
|
| 440 |
earnings = collateral_amount
|
| 441 |
winner_trade = False
|
| 442 |
elif int(trade["outcomeIndex"]) == current_answer:
|
|
@@ -491,12 +501,15 @@ def analyse_trader(
|
|
| 491 |
|
| 492 |
except Exception as e:
|
| 493 |
print(f"Error processing trade {i}: {e}")
|
|
|
|
| 494 |
continue
|
| 495 |
|
| 496 |
return trades_df
|
| 497 |
|
| 498 |
|
| 499 |
-
def analyse_all_traders(
|
|
|
|
|
|
|
| 500 |
"""Analyse all creators."""
|
| 501 |
all_traders = []
|
| 502 |
for trader in tqdm(
|
|
@@ -504,7 +517,7 @@ def analyse_all_traders(trades: pd.DataFrame, tools: pd.DataFrame) -> pd.DataFra
|
|
| 504 |
total=len(trades["trader_address"].unique()),
|
| 505 |
desc="Analysing creators",
|
| 506 |
):
|
| 507 |
-
all_traders.append(analyse_trader(trader, trades, tools))
|
| 508 |
|
| 509 |
# concat all creators
|
| 510 |
all_creators_df = pd.concat(all_traders)
|
|
@@ -573,7 +586,6 @@ def run_profitability_analysis(
|
|
| 573 |
rpc, tools_filename, trades_filename, from_timestamp
|
| 574 |
)
|
| 575 |
|
| 576 |
-
# all trades profitability df
|
| 577 |
print("Analysing trades...")
|
| 578 |
all_trades_df = analyse_all_traders(fpmmTrades, tools)
|
| 579 |
|
|
@@ -584,7 +596,7 @@ def run_profitability_analysis(
|
|
| 584 |
all_trades_df = update_all_trades_parquet(all_trades_df)
|
| 585 |
|
| 586 |
# debugging purposes
|
| 587 |
-
all_trades_df.to_parquet(JSON_DATA_DIR / "all_trades_df.
|
| 588 |
# filter invalid markets. Condition: "is_invalid" is True
|
| 589 |
invalid_trades = all_trades_df.loc[all_trades_df["is_invalid"] == True]
|
| 590 |
if merge:
|
|
|
|
| 257 |
"""Returns whether the user has redeemed the position."""
|
| 258 |
user_positions = user_json["data"]["user"]["userPositions"]
|
| 259 |
condition_id = fpmmTrade["fpmm.condition.id"]
|
|
|
|
| 260 |
for position in user_positions:
|
| 261 |
position_condition_ids = position["position"]["conditionIds"]
|
| 262 |
balance = int(position["balance"])
|
|
|
|
| 371 |
|
| 372 |
def determine_market_status(trade, current_answer):
|
| 373 |
"""Determine the market status of a trade."""
|
| 374 |
+
if (current_answer is np.nan or current_answer is None) and time.time() >= int(
|
| 375 |
+
trade["fpmm.openingTimestamp"]
|
| 376 |
+
):
|
| 377 |
return MarketState.PENDING
|
| 378 |
+
elif current_answer is np.nan or current_answer is None:
|
| 379 |
return MarketState.OPEN
|
| 380 |
elif trade["fpmm.isPendingArbitration"]:
|
| 381 |
return MarketState.ARBITRATING
|
|
|
|
| 385 |
|
| 386 |
|
| 387 |
def analyse_trader(
|
| 388 |
+
trader_address: str,
|
| 389 |
+
fpmmTrades: pd.DataFrame,
|
| 390 |
+
tools: pd.DataFrame,
|
| 391 |
+
daily_info: bool = False,
|
| 392 |
) -> pd.DataFrame:
|
| 393 |
"""Analyse a trader's trades"""
|
| 394 |
# Filter trades and tools for the given trader
|
|
|
|
| 410 |
# Iterate over the trades
|
| 411 |
for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
|
| 412 |
try:
|
| 413 |
+
market_answer = trade["fpmm.currentAnswer"]
|
| 414 |
+
if not daily_info and not market_answer:
|
| 415 |
print(f"Skipping trade {i} because currentAnswer is NaN")
|
| 416 |
continue
|
| 417 |
# Parsing and computing shared values
|
| 418 |
+
|
| 419 |
creation_timestamp_utc = datetime.datetime.fromtimestamp(
|
| 420 |
int(trade["creationTimestamp"]), tz=datetime.timezone.utc
|
| 421 |
)
|
|
|
|
| 424 |
outcome_tokens_traded = wei_to_unit(float(trade["outcomeTokensTraded"]))
|
| 425 |
earnings, winner_trade = (0, False)
|
| 426 |
redemption = _is_redeemed(user_json, trade)
|
| 427 |
+
current_answer = market_answer if market_answer else None
|
| 428 |
market_creator = trade["market_creator"]
|
| 429 |
|
| 430 |
# Determine market status
|
| 431 |
market_status = determine_market_status(trade, current_answer)
|
| 432 |
|
| 433 |
# Skip non-closed markets
|
| 434 |
+
if not daily_info and market_status != MarketState.CLOSED:
|
| 435 |
print(
|
| 436 |
f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
|
| 437 |
)
|
| 438 |
continue
|
| 439 |
+
if current_answer is not None:
|
| 440 |
+
current_answer = convert_hex_to_int(current_answer)
|
| 441 |
|
| 442 |
# Compute invalidity
|
| 443 |
is_invalid = current_answer == INVALID_ANSWER
|
| 444 |
|
| 445 |
# Compute earnings and winner trade status
|
| 446 |
+
if current_answer is None:
|
| 447 |
+
earnings = 0.0
|
| 448 |
+
winner_trade = None
|
| 449 |
+
elif is_invalid:
|
| 450 |
earnings = collateral_amount
|
| 451 |
winner_trade = False
|
| 452 |
elif int(trade["outcomeIndex"]) == current_answer:
|
|
|
|
| 501 |
|
| 502 |
except Exception as e:
|
| 503 |
print(f"Error processing trade {i}: {e}")
|
| 504 |
+
print(trade)
|
| 505 |
continue
|
| 506 |
|
| 507 |
return trades_df
|
| 508 |
|
| 509 |
|
| 510 |
+
def analyse_all_traders(
|
| 511 |
+
trades: pd.DataFrame, tools: pd.DataFrame, daily_info: bool = False
|
| 512 |
+
) -> pd.DataFrame:
|
| 513 |
"""Analyse all creators."""
|
| 514 |
all_traders = []
|
| 515 |
for trader in tqdm(
|
|
|
|
| 517 |
total=len(trades["trader_address"].unique()),
|
| 518 |
desc="Analysing creators",
|
| 519 |
):
|
| 520 |
+
all_traders.append(analyse_trader(trader, trades, tools, daily_info))
|
| 521 |
|
| 522 |
# concat all creators
|
| 523 |
all_creators_df = pd.concat(all_traders)
|
|
|
|
| 586 |
rpc, tools_filename, trades_filename, from_timestamp
|
| 587 |
)
|
| 588 |
|
|
|
|
| 589 |
print("Analysing trades...")
|
| 590 |
all_trades_df = analyse_all_traders(fpmmTrades, tools)
|
| 591 |
|
|
|
|
| 596 |
all_trades_df = update_all_trades_parquet(all_trades_df)
|
| 597 |
|
| 598 |
# debugging purposes
|
| 599 |
+
all_trades_df.to_parquet(JSON_DATA_DIR / "all_trades_df.parquet")
|
| 600 |
# filter invalid markets. Condition: "is_invalid" is True
|
| 601 |
invalid_trades = all_trades_df.loc[all_trades_df["is_invalid"] == True]
|
| 602 |
if merge:
|
scripts/pull_data.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import logging
|
| 2 |
-
import os
|
| 3 |
import pickle
|
| 4 |
from datetime import datetime
|
| 5 |
from concurrent.futures import ThreadPoolExecutor
|
|
@@ -14,7 +13,7 @@ from markets import (
|
|
| 14 |
)
|
| 15 |
from tools import DEFAULT_FILENAME as TOOLS_FILENAME, generate_tools_file
|
| 16 |
from profitability import run_profitability_analysis, DEFAULT_60_DAYS_AGO_TIMESTAMP
|
| 17 |
-
from utils import get_question, current_answer, RPC
|
| 18 |
from get_mech_info import (
|
| 19 |
get_mech_events_last_60_days,
|
| 20 |
get_mech_events_since_last_run,
|
|
@@ -120,12 +119,13 @@ def updating_timestamps(rpc: str, tools_filename: str):
|
|
| 120 |
gc.collect()
|
| 121 |
|
| 122 |
|
|
|
|
| 123 |
def only_new_weekly_analysis():
|
| 124 |
"""Run weekly analysis for the FPMMS project."""
|
| 125 |
rpc = RPC
|
| 126 |
# Run markets ETL
|
| 127 |
logging.info("Running markets ETL")
|
| 128 |
-
|
| 129 |
logging.info("Markets ETL completed")
|
| 130 |
|
| 131 |
# New tools ETL
|
|
|
|
| 1 |
import logging
|
|
|
|
| 2 |
import pickle
|
| 3 |
from datetime import datetime
|
| 4 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
| 13 |
)
|
| 14 |
from tools import DEFAULT_FILENAME as TOOLS_FILENAME, generate_tools_file
|
| 15 |
from profitability import run_profitability_analysis, DEFAULT_60_DAYS_AGO_TIMESTAMP
|
| 16 |
+
from utils import get_question, current_answer, RPC, measure_execution_time
|
| 17 |
from get_mech_info import (
|
| 18 |
get_mech_events_last_60_days,
|
| 19 |
get_mech_events_since_last_run,
|
|
|
|
| 119 |
gc.collect()
|
| 120 |
|
| 121 |
|
| 122 |
+
@measure_execution_time
|
| 123 |
def only_new_weekly_analysis():
|
| 124 |
"""Run weekly analysis for the FPMMS project."""
|
| 125 |
rpc = RPC
|
| 126 |
# Run markets ETL
|
| 127 |
logging.info("Running markets ETL")
|
| 128 |
+
mkt_etl(MARKETS_FILENAME)
|
| 129 |
logging.info("Markets ETL completed")
|
| 130 |
|
| 131 |
# New tools ETL
|
tabs/daily_graphs.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import gc
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
from plotly.subplots import make_subplots
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
from datetime import datetime, timedelta
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def plot_daily_trades(trades_df: pd.DataFrame) -> gr.Plot:
|
| 11 |
+
# get daily trades
|
| 12 |
+
daily_trades_count = (
|
| 13 |
+
trades_df.groupby("month_year_week").size().reset_index(name="trades")
|
| 14 |
+
)
|
| 15 |
+
daily_trades_count.columns = daily_trades_count.columns.astype(str)
|
| 16 |
+
print("WIP")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_current_week_data(trades_df: pd.DataFrame) -> pd.DataFrame:
|
| 20 |
+
# Get current date
|
| 21 |
+
now = datetime.now()
|
| 22 |
+
|
| 23 |
+
# Get start of the current week (Monday)
|
| 24 |
+
start_of_week = now - timedelta(days=now.weekday())
|
| 25 |
+
start_of_week = start_of_week.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 26 |
+
print(f"start of the week = {start_of_week}")
|
| 27 |
+
|
| 28 |
+
# Get end of the current week (Sunday)
|
| 29 |
+
end_of_week = start_of_week + timedelta(days=6)
|
| 30 |
+
end_of_week = end_of_week.replace(hour=23, minute=59, second=59, microsecond=999999)
|
| 31 |
+
print(f"end of the week = {end_of_week}")
|
| 32 |
+
trades_df["creation_date"] = pd.to_datetime(trades_df["creation_date"])
|
| 33 |
+
# Filter the dataframe
|
| 34 |
+
return trades_df[
|
| 35 |
+
(trades_df["creation_date"] >= start_of_week)
|
| 36 |
+
& (trades_df["creation_date"] <= end_of_week)
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_boxplot_daily_metrics(
|
| 41 |
+
column_name: str, trades_df: pd.DataFrame
|
| 42 |
+
) -> pd.DataFrame:
|
| 43 |
+
trades_filtered = trades_df[
|
| 44 |
+
["creation_timestamp", "creation_date", "market_creator", column_name]
|
| 45 |
+
]
|
| 46 |
+
# adding the total
|
| 47 |
+
trades_filtered_all = trades_df.copy(deep=True)
|
| 48 |
+
trades_filtered_all["market_creator"] = "all"
|
| 49 |
+
|
| 50 |
+
# merging both dataframes
|
| 51 |
+
all_filtered_trades = pd.concat(
|
| 52 |
+
[trades_filtered, trades_filtered_all], ignore_index=True
|
| 53 |
+
)
|
| 54 |
+
all_filtered_trades = all_filtered_trades.sort_values(
|
| 55 |
+
by="creation_timestamp", ascending=True
|
| 56 |
+
)
|
| 57 |
+
gc.collect()
|
| 58 |
+
return all_filtered_trades
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def plot_daily_metrics(
|
| 62 |
+
metric_name: str, trades_df: pd.DataFrame, trader_filter: str = None
|
| 63 |
+
) -> gr.Plot:
|
| 64 |
+
"""Plots the trade metrics."""
|
| 65 |
+
|
| 66 |
+
if metric_name == "mech calls":
|
| 67 |
+
metric_name = "mech_calls"
|
| 68 |
+
column_name = "num_mech_calls"
|
| 69 |
+
yaxis_title = "Nr of mech calls per trade"
|
| 70 |
+
elif metric_name == "ROI":
|
| 71 |
+
column_name = "roi"
|
| 72 |
+
yaxis_title = "ROI (net profit/cost)"
|
| 73 |
+
elif metric_name == "collateral amount":
|
| 74 |
+
metric_name = "collateral_amount"
|
| 75 |
+
column_name = metric_name
|
| 76 |
+
yaxis_title = "Collateral amount per trade (xDAI)"
|
| 77 |
+
elif metric_name == "net earnings":
|
| 78 |
+
metric_name = "net_earnings"
|
| 79 |
+
column_name = metric_name
|
| 80 |
+
yaxis_title = "Net profit per trade (xDAI)"
|
| 81 |
+
else: # earnings
|
| 82 |
+
column_name = metric_name
|
| 83 |
+
yaxis_title = "Gross profit per trade (xDAI)"
|
| 84 |
+
|
| 85 |
+
color_discrete = ["purple", "darkgoldenrod", "darkgreen"]
|
| 86 |
+
|
| 87 |
+
if trader_filter == "agent":
|
| 88 |
+
trades_filtered = get_boxplot_daily_metrics(
|
| 89 |
+
column_name, trades_df.loc[trades_df["staking"] != "non_agent"]
|
| 90 |
+
)
|
| 91 |
+
color_discrete = ["darkviolet", "goldenrod", "green"]
|
| 92 |
+
elif trader_filter == "non_agent":
|
| 93 |
+
trades_filtered = get_boxplot_daily_metrics(
|
| 94 |
+
column_name, trades_df.loc[trades_df["staking"] == "non_agent"]
|
| 95 |
+
)
|
| 96 |
+
else:
|
| 97 |
+
trades_filtered = get_boxplot_daily_metrics(column_name, trades_df)
|
| 98 |
+
color_mapping = [
|
| 99 |
+
"darkviolet",
|
| 100 |
+
"purple",
|
| 101 |
+
"goldenrod",
|
| 102 |
+
"darkgoldenrod",
|
| 103 |
+
"green",
|
| 104 |
+
"darkgreen",
|
| 105 |
+
]
|
| 106 |
+
|
| 107 |
+
# Create binary staking category
|
| 108 |
+
trades_filtered["trader_type"] = trades_filtered["staking"].apply(
|
| 109 |
+
lambda x: "non_agent" if x == "non_agent" else "agent"
|
| 110 |
+
)
|
| 111 |
+
trades_filtered["trader_market"] = trades_filtered.apply(
|
| 112 |
+
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
| 113 |
+
)
|
| 114 |
+
fig = px.box(
|
| 115 |
+
trades_filtered,
|
| 116 |
+
x="creation_date",
|
| 117 |
+
y=column_name,
|
| 118 |
+
color="trader_market",
|
| 119 |
+
color_discrete_sequence=color_mapping,
|
| 120 |
+
category_orders={
|
| 121 |
+
"market_creator": ["pearl", "quickstart", "all"],
|
| 122 |
+
"trader_market": [
|
| 123 |
+
("agent", "pearl"),
|
| 124 |
+
("non_agent", "pearl"),
|
| 125 |
+
("agent", "quickstart"),
|
| 126 |
+
("non_agent", "quickstart"),
|
| 127 |
+
("agent", "all"),
|
| 128 |
+
("non_agent", "all"),
|
| 129 |
+
],
|
| 130 |
+
},
|
| 131 |
+
facet_col="market_creator",
|
| 132 |
+
)
|
| 133 |
+
fig.update_traces(boxmean=True)
|
| 134 |
+
fig.update_layout(
|
| 135 |
+
xaxis_title="Day",
|
| 136 |
+
yaxis_title=yaxis_title,
|
| 137 |
+
legend=dict(yanchor="top", y=0.5),
|
| 138 |
+
)
|
| 139 |
+
for axis in fig.layout:
|
| 140 |
+
if axis.startswith("xaxis"):
|
| 141 |
+
fig.layout[axis].update(title="Day")
|
| 142 |
+
fig.update_xaxes(tickformat="%b %d")
|
| 143 |
+
return gr.Plot(
|
| 144 |
+
value=fig,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def plot_daily_metrics_v2(
|
| 149 |
+
metric_name: str, trades_df: pd.DataFrame, trader_filter: str = None
|
| 150 |
+
) -> gr.Plot:
|
| 151 |
+
"""Plots the trade metrics."""
|
| 152 |
+
|
| 153 |
+
if metric_name == "mech calls":
|
| 154 |
+
metric_name = "mech_calls"
|
| 155 |
+
column_name = "num_mech_calls"
|
| 156 |
+
yaxis_title = "Nr of mech calls per trade"
|
| 157 |
+
elif metric_name == "ROI":
|
| 158 |
+
column_name = "roi"
|
| 159 |
+
yaxis_title = "ROI (net profit/cost)"
|
| 160 |
+
elif metric_name == "collateral amount":
|
| 161 |
+
metric_name = "collateral_amount"
|
| 162 |
+
column_name = metric_name
|
| 163 |
+
yaxis_title = "Collateral amount per trade (xDAI)"
|
| 164 |
+
elif metric_name == "net earnings":
|
| 165 |
+
metric_name = "net_earnings"
|
| 166 |
+
column_name = metric_name
|
| 167 |
+
yaxis_title = "Net profit per trade (xDAI)"
|
| 168 |
+
else: # earnings
|
| 169 |
+
column_name = metric_name
|
| 170 |
+
yaxis_title = "Gross profit per trade (xDAI)"
|
| 171 |
+
|
| 172 |
+
color_discrete = ["purple", "darkgoldenrod", "darkgreen"]
|
| 173 |
+
trades_filtered = get_boxplot_daily_metrics(column_name, trades_df)
|
| 174 |
+
fig = make_subplots(rows=1, cols=2, subplot_titles=("Agent", "Non-Agents"))
|
| 175 |
+
|
| 176 |
+
# Create first boxplot for staking=True
|
| 177 |
+
fig.add_trace(
|
| 178 |
+
go.Box(
|
| 179 |
+
x=trades_filtered[trades_filtered["staking"] != "non_agent"][
|
| 180 |
+
"creation_date"
|
| 181 |
+
],
|
| 182 |
+
y=trades_filtered[trades_filtered["staking"] != "non_agent"][column_name],
|
| 183 |
+
name="Trades from agents",
|
| 184 |
+
marker_color=color_discrete[0],
|
| 185 |
+
legendgroup="staking_true",
|
| 186 |
+
showlegend=True,
|
| 187 |
+
),
|
| 188 |
+
row=1,
|
| 189 |
+
col=1,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# Create second boxplot for staking=False
|
| 193 |
+
fig.add_trace(
|
| 194 |
+
go.Box(
|
| 195 |
+
x=trades_filtered[trades_filtered["staking"] == False]["creation_date"],
|
| 196 |
+
y=trades_filtered[trades_filtered["staking"] == False][column_name],
|
| 197 |
+
name="Staking False",
|
| 198 |
+
marker_color=color_discrete[1],
|
| 199 |
+
legendgroup="staking_false",
|
| 200 |
+
showlegend=True,
|
| 201 |
+
),
|
| 202 |
+
row=1,
|
| 203 |
+
col=2,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
# Update layout
|
| 207 |
+
fig.update_layout(
|
| 208 |
+
height=600,
|
| 209 |
+
width=1200,
|
| 210 |
+
title_text=f"Box Plot of {column_name} by Staking Status",
|
| 211 |
+
showlegend=True,
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Update y-axes to have the same range
|
| 215 |
+
fig.update_yaxes(matches="y")
|
tabs/metrics.py
CHANGED
|
@@ -2,7 +2,6 @@ import pandas as pd
|
|
| 2 |
import gradio as gr
|
| 3 |
import plotly.express as px
|
| 4 |
import gc
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
|
| 7 |
trade_metric_choices = [
|
| 8 |
"mech calls",
|
|
@@ -12,6 +11,11 @@ trade_metric_choices = [
|
|
| 12 |
"ROI",
|
| 13 |
]
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
tool_metric_choices = {
|
| 16 |
"Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %": "win_perc",
|
| 17 |
"Total Weekly Inaccurate Nr of Mech Tool Responses": "losses",
|
|
@@ -20,6 +24,7 @@ tool_metric_choices = {
|
|
| 20 |
}
|
| 21 |
|
| 22 |
default_trade_metric = "ROI"
|
|
|
|
| 23 |
default_tool_metric = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %"
|
| 24 |
|
| 25 |
HEIGHT = 600
|
|
@@ -142,10 +147,12 @@ def plot_trade_metrics(
|
|
| 142 |
column_name = metric_name
|
| 143 |
yaxis_title = "Gross profit per trade (xDAI)"
|
| 144 |
|
|
|
|
| 145 |
if trader_filter == "agent":
|
| 146 |
trades_filtered = get_boxplot_metrics(
|
| 147 |
column_name, trades_df.loc[trades_df["staking"] != "non_agent"]
|
| 148 |
)
|
|
|
|
| 149 |
elif trader_filter == "non_agent":
|
| 150 |
trades_filtered = get_boxplot_metrics(
|
| 151 |
column_name, trades_df.loc[trades_df["staking"] == "non_agent"]
|
|
@@ -157,7 +164,7 @@ def plot_trade_metrics(
|
|
| 157 |
x="month_year_week",
|
| 158 |
y=column_name,
|
| 159 |
color="market_creator",
|
| 160 |
-
color_discrete_sequence=
|
| 161 |
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
|
| 162 |
)
|
| 163 |
fig.update_traces(boxmean=True)
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import plotly.express as px
|
| 4 |
import gc
|
|
|
|
| 5 |
|
| 6 |
trade_metric_choices = [
|
| 7 |
"mech calls",
|
|
|
|
| 11 |
"ROI",
|
| 12 |
]
|
| 13 |
|
| 14 |
+
trade_daily_metric_choices = [
|
| 15 |
+
"mech calls",
|
| 16 |
+
"collateral amount",
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
tool_metric_choices = {
|
| 20 |
"Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %": "win_perc",
|
| 21 |
"Total Weekly Inaccurate Nr of Mech Tool Responses": "losses",
|
|
|
|
| 24 |
}
|
| 25 |
|
| 26 |
default_trade_metric = "ROI"
|
| 27 |
+
default_daily_metric = "collateral amount"
|
| 28 |
default_tool_metric = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %"
|
| 29 |
|
| 30 |
HEIGHT = 600
|
|
|
|
| 147 |
column_name = metric_name
|
| 148 |
yaxis_title = "Gross profit per trade (xDAI)"
|
| 149 |
|
| 150 |
+
color_discrete = ["purple", "darkgoldenrod", "darkgreen"]
|
| 151 |
if trader_filter == "agent":
|
| 152 |
trades_filtered = get_boxplot_metrics(
|
| 153 |
column_name, trades_df.loc[trades_df["staking"] != "non_agent"]
|
| 154 |
)
|
| 155 |
+
color_discrete = ["darkviolet", "goldenrod", "green"]
|
| 156 |
elif trader_filter == "non_agent":
|
| 157 |
trades_filtered = get_boxplot_metrics(
|
| 158 |
column_name, trades_df.loc[trades_df["staking"] == "non_agent"]
|
|
|
|
| 164 |
x="month_year_week",
|
| 165 |
y=column_name,
|
| 166 |
color="market_creator",
|
| 167 |
+
color_discrete_sequence=color_discrete,
|
| 168 |
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
|
| 169 |
)
|
| 170 |
fig.update_traces(boxmean=True)
|
tabs/trades.py
CHANGED
|
@@ -12,6 +12,7 @@ WIDTH = 1100
|
|
| 12 |
def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
|
| 13 |
"""Prepares the trades data for analysis."""
|
| 14 |
trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
|
|
|
|
| 15 |
trades_df["creation_timestamp"] = trades_df["creation_timestamp"].dt.tz_convert(
|
| 16 |
"UTC"
|
| 17 |
)
|
|
|
|
| 12 |
def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
|
| 13 |
"""Prepares the trades data for analysis."""
|
| 14 |
trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
|
| 15 |
+
trades_df["creation_date"] = trades_df["creation_timestamp"].dt.date
|
| 16 |
trades_df["creation_timestamp"] = trades_df["creation_timestamp"].dt.tz_convert(
|
| 17 |
"UTC"
|
| 18 |
)
|