Commit
·
ccf1803
1
Parent(s):
58ed767
adding tools file
Browse files- data/tools.parquet +2 -2
- notebooks/markets_analysis.ipynb +204 -2
- notebooks/tools_accuracy.ipynb +42 -2
data/tools.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c76ee1cf2a3cd51f434b4d591f747c307d90f20f5a347fd3aab36a0b5eab08c
|
| 3 |
+
size 592980860
|
notebooks/markets_analysis.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
@@ -13,6 +13,27 @@
|
|
| 13 |
"sns.set_style(\"darkgrid\")"
|
| 14 |
]
|
| 15 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
{
|
| 17 |
"cell_type": "code",
|
| 18 |
"execution_count": 2,
|
|
@@ -31,6 +52,187 @@
|
|
| 31 |
"markets = pd.read_parquet('../data/fpmms.parquet')"
|
| 32 |
]
|
| 33 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
{
|
| 35 |
"cell_type": "code",
|
| 36 |
"execution_count": 4,
|
|
@@ -1356,7 +1558,7 @@
|
|
| 1356 |
],
|
| 1357 |
"metadata": {
|
| 1358 |
"kernelspec": {
|
| 1359 |
-
"display_name": "
|
| 1360 |
"language": "python",
|
| 1361 |
"name": "python3"
|
| 1362 |
},
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
|
|
| 13 |
"sns.set_style(\"darkgrid\")"
|
| 14 |
]
|
| 15 |
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "code",
|
| 18 |
+
"execution_count": 7,
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"outputs": [
|
| 21 |
+
{
|
| 22 |
+
"ename": "ModuleNotFoundError",
|
| 23 |
+
"evalue": "No module named 'scripts'",
|
| 24 |
+
"output_type": "error",
|
| 25 |
+
"traceback": [
|
| 26 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 27 |
+
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
| 28 |
+
"Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mscripts\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mget_mech_info\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m update_fpmmTrades_parquet\n",
|
| 29 |
+
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'scripts'"
|
| 30 |
+
]
|
| 31 |
+
}
|
| 32 |
+
],
|
| 33 |
+
"source": [
|
| 34 |
+
"from scripts.get_mech_info import update_fpmmTrades_parquet"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
{
|
| 38 |
"cell_type": "code",
|
| 39 |
"execution_count": 2,
|
|
|
|
| 52 |
"markets = pd.read_parquet('../data/fpmms.parquet')"
|
| 53 |
]
|
| 54 |
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": 4,
|
| 58 |
+
"metadata": {},
|
| 59 |
+
"outputs": [],
|
| 60 |
+
"source": [
|
| 61 |
+
"trades_data = pd.read_parquet('../tmp/fpmmTrades.parquet')"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": null,
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"outputs": [],
|
| 69 |
+
"source": [
|
| 70 |
+
"trades_filename = \"new_fpmmTrades.parquet\""
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": 8,
|
| 76 |
+
"metadata": {},
|
| 77 |
+
"outputs": [],
|
| 78 |
+
"source": [
|
| 79 |
+
"new_trades = pd.read_parquet(\"../tmp/new_fpmmTrades.parquet\")"
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "code",
|
| 84 |
+
"execution_count": 9,
|
| 85 |
+
"metadata": {},
|
| 86 |
+
"outputs": [],
|
| 87 |
+
"source": [
|
| 88 |
+
"merge_df = pd.concat([trades_data, new_trades], ignore_index=True)"
|
| 89 |
+
]
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "code",
|
| 93 |
+
"execution_count": 10,
|
| 94 |
+
"metadata": {},
|
| 95 |
+
"outputs": [],
|
| 96 |
+
"source": [
|
| 97 |
+
"merge_df[\"fpmm.arbitrationOccurred\"] = merge_df[\"fpmm.arbitrationOccurred\"].astype(\n",
|
| 98 |
+
" bool\n",
|
| 99 |
+
")"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"cell_type": "code",
|
| 104 |
+
"execution_count": 11,
|
| 105 |
+
"metadata": {},
|
| 106 |
+
"outputs": [],
|
| 107 |
+
"source": [
|
| 108 |
+
"merge_df[\"fpmm.isPendingArbitration\"] = merge_df[\n",
|
| 109 |
+
" \"fpmm.isPendingArbitration\"\n",
|
| 110 |
+
" ].astype(bool)"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"cell_type": "code",
|
| 115 |
+
"execution_count": 12,
|
| 116 |
+
"metadata": {},
|
| 117 |
+
"outputs": [
|
| 118 |
+
{
|
| 119 |
+
"name": "stdout",
|
| 120 |
+
"output_type": "stream",
|
| 121 |
+
"text": [
|
| 122 |
+
"Initial length before removing duplicates in fpmmTrades= 123556\n"
|
| 123 |
+
]
|
| 124 |
+
}
|
| 125 |
+
],
|
| 126 |
+
"source": [
|
| 127 |
+
" print(f\"Initial length before removing duplicates in fpmmTrades= {len(merge_df)}\")"
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"execution_count": 13,
|
| 133 |
+
"metadata": {},
|
| 134 |
+
"outputs": [
|
| 135 |
+
{
|
| 136 |
+
"name": "stdout",
|
| 137 |
+
"output_type": "stream",
|
| 138 |
+
"text": [
|
| 139 |
+
"Final length after removing duplicates in fpmmTrades= 117771\n"
|
| 140 |
+
]
|
| 141 |
+
}
|
| 142 |
+
],
|
| 143 |
+
"source": [
|
| 144 |
+
"merge_df.drop_duplicates(\"id\", inplace=True)\n",
|
| 145 |
+
"print(f\"Final length after removing duplicates in fpmmTrades= {len(merge_df)}\")"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "code",
|
| 150 |
+
"execution_count": 14,
|
| 151 |
+
"metadata": {},
|
| 152 |
+
"outputs": [],
|
| 153 |
+
"source": [
|
| 154 |
+
"merge_df.to_parquet(\"../tmp/fpmmTrades.parquet\", index=False)"
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "code",
|
| 159 |
+
"execution_count": null,
|
| 160 |
+
"metadata": {},
|
| 161 |
+
"outputs": [],
|
| 162 |
+
"source": []
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"cell_type": "code",
|
| 166 |
+
"execution_count": 6,
|
| 167 |
+
"metadata": {},
|
| 168 |
+
"outputs": [
|
| 169 |
+
{
|
| 170 |
+
"data": {
|
| 171 |
+
"text/plain": [
|
| 172 |
+
"Index(['collateralAmount', 'collateralAmountUSD', 'collateralToken',\n",
|
| 173 |
+
" 'creationTimestamp', 'trader_address', 'feeAmount', 'id',\n",
|
| 174 |
+
" 'oldOutcomeTokenMarginalPrice', 'outcomeIndex',\n",
|
| 175 |
+
" 'outcomeTokenMarginalPrice', 'outcomeTokensTraded', 'title',\n",
|
| 176 |
+
" 'transactionHash', 'type', 'market_creator',\n",
|
| 177 |
+
" 'fpmm.answerFinalizedTimestamp', 'fpmm.arbitrationOccurred',\n",
|
| 178 |
+
" 'fpmm.currentAnswer', 'fpmm.id', 'fpmm.isPendingArbitration',\n",
|
| 179 |
+
" 'fpmm.openingTimestamp', 'fpmm.outcomes', 'fpmm.title',\n",
|
| 180 |
+
" 'fpmm.condition.id'],\n",
|
| 181 |
+
" dtype='object')"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
"execution_count": 6,
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"output_type": "execute_result"
|
| 187 |
+
}
|
| 188 |
+
],
|
| 189 |
+
"source": [
|
| 190 |
+
"trades_data.columns"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"cell_type": "code",
|
| 195 |
+
"execution_count": 5,
|
| 196 |
+
"metadata": {},
|
| 197 |
+
"outputs": [
|
| 198 |
+
{
|
| 199 |
+
"data": {
|
| 200 |
+
"text/plain": [
|
| 201 |
+
"102664"
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
"execution_count": 5,
|
| 205 |
+
"metadata": {},
|
| 206 |
+
"output_type": "execute_result"
|
| 207 |
+
}
|
| 208 |
+
],
|
| 209 |
+
"source": [
|
| 210 |
+
"len(trades_data)"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": null,
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"max(fpmmsTra)"
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"cell_type": "code",
|
| 224 |
+
"execution_count": null,
|
| 225 |
+
"metadata": {},
|
| 226 |
+
"outputs": [],
|
| 227 |
+
"source": []
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"cell_type": "code",
|
| 231 |
+
"execution_count": null,
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"outputs": [],
|
| 234 |
+
"source": []
|
| 235 |
+
},
|
| 236 |
{
|
| 237 |
"cell_type": "code",
|
| 238 |
"execution_count": 4,
|
|
|
|
| 1558 |
],
|
| 1559 |
"metadata": {
|
| 1560 |
"kernelspec": {
|
| 1561 |
+
"display_name": "hf_dashboards",
|
| 1562 |
"language": "python",
|
| 1563 |
"name": "python3"
|
| 1564 |
},
|
notebooks/tools_accuracy.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
@@ -15,13 +15,53 @@
|
|
| 15 |
},
|
| 16 |
{
|
| 17 |
"cell_type": "code",
|
| 18 |
-
"execution_count":
|
| 19 |
"metadata": {},
|
| 20 |
"outputs": [],
|
| 21 |
"source": [
|
| 22 |
"tools = pd.read_parquet('../data/tools.parquet')"
|
| 23 |
]
|
| 24 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
{
|
| 26 |
"cell_type": "code",
|
| 27 |
"execution_count": 4,
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
|
|
| 15 |
},
|
| 16 |
{
|
| 17 |
"cell_type": "code",
|
| 18 |
+
"execution_count": 2,
|
| 19 |
"metadata": {},
|
| 20 |
"outputs": [],
|
| 21 |
"source": [
|
| 22 |
"tools = pd.read_parquet('../data/tools.parquet')"
|
| 23 |
]
|
| 24 |
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": 3,
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [
|
| 30 |
+
{
|
| 31 |
+
"data": {
|
| 32 |
+
"text/plain": [
|
| 33 |
+
"Timestamp('2024-12-10 07:50:55+0000', tz='UTC')"
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
"execution_count": 3,
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"output_type": "execute_result"
|
| 39 |
+
}
|
| 40 |
+
],
|
| 41 |
+
"source": [
|
| 42 |
+
"max(tools.request_time)"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"execution_count": 4,
|
| 48 |
+
"metadata": {},
|
| 49 |
+
"outputs": [
|
| 50 |
+
{
|
| 51 |
+
"data": {
|
| 52 |
+
"text/plain": [
|
| 53 |
+
"Timestamp('2024-10-13 00:00:30+0000', tz='UTC')"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
"execution_count": 4,
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"output_type": "execute_result"
|
| 59 |
+
}
|
| 60 |
+
],
|
| 61 |
+
"source": [
|
| 62 |
+
"min(tools.request_time)"
|
| 63 |
+
]
|
| 64 |
+
},
|
| 65 |
{
|
| 66 |
"cell_type": "code",
|
| 67 |
"execution_count": 4,
|