remove copy
Browse files- tabs/error.py +3 -3
- tabs/tool_win.py +1 -1
- test.ipynb +24 -672
tabs/error.py
CHANGED
|
@@ -16,7 +16,7 @@ def set_error(row: pd.Series) -> bool:
|
|
| 16 |
|
| 17 |
def get_error_data(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
| 18 |
"""Gets the error data for the given tools and calculates the error percentage."""
|
| 19 |
-
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
| 20 |
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
| 21 |
error = tools_inc.groupby(['tool', 'request_month_year_week', 'error']).size().unstack().fillna(0).reset_index()
|
| 22 |
error['error_perc'] = (error[True] / (error[False] + error[True])) * 100
|
|
@@ -50,7 +50,7 @@ def plot_error_data(error_all_df: pd.DataFrame) -> gr.BarPlot:
|
|
| 50 |
|
| 51 |
def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
| 52 |
"""Plots the error data for the given tool."""
|
| 53 |
-
error_tool = error_df[error_df['tool'] == tool]
|
| 54 |
error_tool.columns = error_tool.columns.astype(str)
|
| 55 |
error_tool['error_perc'] = error_tool['error_perc'].apply(lambda x: round(x, 4))
|
| 56 |
|
|
@@ -71,7 +71,7 @@ def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
|
| 71 |
|
| 72 |
def plot_week_error_data(error_df: pd.DataFrame, week: str) -> gr.BarPlot:
|
| 73 |
"""Plots the error data for the given week."""
|
| 74 |
-
error_week = error_df[error_df['request_month_year_week'] == week]
|
| 75 |
error_week.columns = error_week.columns.astype(str)
|
| 76 |
error_week['error_perc'] = error_week['error_perc'].apply(lambda x: round(x, 4))
|
| 77 |
return gr.BarPlot(
|
|
|
|
| 16 |
|
| 17 |
def get_error_data(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
| 18 |
"""Gets the error data for the given tools and calculates the error percentage."""
|
| 19 |
+
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
| 20 |
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
| 21 |
error = tools_inc.groupby(['tool', 'request_month_year_week', 'error']).size().unstack().fillna(0).reset_index()
|
| 22 |
error['error_perc'] = (error[True] / (error[False] + error[True])) * 100
|
|
|
|
| 50 |
|
| 51 |
def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
| 52 |
"""Plots the error data for the given tool."""
|
| 53 |
+
error_tool = error_df[error_df['tool'] == tool]
|
| 54 |
error_tool.columns = error_tool.columns.astype(str)
|
| 55 |
error_tool['error_perc'] = error_tool['error_perc'].apply(lambda x: round(x, 4))
|
| 56 |
|
|
|
|
| 71 |
|
| 72 |
def plot_week_error_data(error_df: pd.DataFrame, week: str) -> gr.BarPlot:
|
| 73 |
"""Plots the error data for the given week."""
|
| 74 |
+
error_week = error_df[error_df['request_month_year_week'] == week]
|
| 75 |
error_week.columns = error_week.columns.astype(str)
|
| 76 |
error_week['error_perc'] = error_week['error_perc'].apply(lambda x: round(x, 4))
|
| 77 |
return gr.BarPlot(
|
tabs/tool_win.py
CHANGED
|
@@ -18,7 +18,7 @@ def set_error(row: pd.Series) -> bool:
|
|
| 18 |
|
| 19 |
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
| 20 |
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
| 21 |
-
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
| 22 |
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
| 23 |
tools_non_error = tools_inc[tools_inc['error'] != True]
|
| 24 |
tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})
|
|
|
|
| 18 |
|
| 19 |
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
| 20 |
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
| 21 |
+
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
| 22 |
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
| 23 |
tools_non_error = tools_inc[tools_inc['error'] != True]
|
| 24 |
tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})
|
test.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
@@ -25,584 +25,35 @@
|
|
| 25 |
},
|
| 26 |
{
|
| 27 |
"cell_type": "code",
|
| 28 |
-
"execution_count":
|
| 29 |
-
"metadata": {},
|
| 30 |
-
"outputs": [],
|
| 31 |
-
"source": [
|
| 32 |
-
"tools = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/tools.parquet')\n",
|
| 33 |
-
"tools['trader_address'] = tools['trader_address'].str.lower()\n",
|
| 34 |
-
"fpmmTrades = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/fpmmTrades.parquet')\n",
|
| 35 |
-
"# trades = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/all_trades_profitability.parquet')"
|
| 36 |
-
]
|
| 37 |
-
},
|
| 38 |
-
{
|
| 39 |
-
"cell_type": "code",
|
| 40 |
-
"execution_count": null,
|
| 41 |
-
"metadata": {},
|
| 42 |
-
"outputs": [],
|
| 43 |
-
"source": [
|
| 44 |
-
"IRRELEVANT_TOOLS = [\n",
|
| 45 |
-
" \"openai-text-davinci-002\",\n",
|
| 46 |
-
" \"openai-text-davinci-003\",\n",
|
| 47 |
-
" \"openai-gpt-3.5-turbo\",\n",
|
| 48 |
-
" \"openai-gpt-4\",\n",
|
| 49 |
-
" \"stabilityai-stable-diffusion-v1-5\",\n",
|
| 50 |
-
" \"stabilityai-stable-diffusion-xl-beta-v2-2-2\",\n",
|
| 51 |
-
" \"stabilityai-stable-diffusion-512-v2-1\",\n",
|
| 52 |
-
" \"stabilityai-stable-diffusion-768-v2-1\",\n",
|
| 53 |
-
" \"deepmind-optimization-strong\",\n",
|
| 54 |
-
" \"deepmind-optimization\",\n",
|
| 55 |
-
"]\n",
|
| 56 |
-
"QUERY_BATCH_SIZE = 1000\n",
|
| 57 |
-
"DUST_THRESHOLD = 10000000000000\n",
|
| 58 |
-
"INVALID_ANSWER_HEX = (\n",
|
| 59 |
-
" \"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\"\n",
|
| 60 |
-
")\n",
|
| 61 |
-
"INVALID_ANSWER = -1\n",
|
| 62 |
-
"FPMM_CREATOR = \"0x89c5cc945dd550bcffb72fe42bff002429f46fec\"\n",
|
| 63 |
-
"DEFAULT_FROM_DATE = \"1970-01-01T00:00:00\"\n",
|
| 64 |
-
"DEFAULT_TO_DATE = \"2038-01-19T03:14:07\"\n",
|
| 65 |
-
"DEFAULT_FROM_TIMESTAMP = 0\n",
|
| 66 |
-
"DEFAULT_TO_TIMESTAMP = 2147483647\n",
|
| 67 |
-
"WXDAI_CONTRACT_ADDRESS = \"0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d\"\n",
|
| 68 |
-
"DEFAULT_MECH_FEE = 0.01\n",
|
| 69 |
-
"DUST_THRESHOLD = 10000000000000\n",
|
| 70 |
-
"SCRIPTS_DIR = Path('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/scripts')\n",
|
| 71 |
-
"ROOT_DIR = SCRIPTS_DIR.parent\n",
|
| 72 |
-
"DATA_DIR = ROOT_DIR / \"data\"\n",
|
| 73 |
-
"\n",
|
| 74 |
-
"class MarketState(Enum):\n",
|
| 75 |
-
" \"\"\"Market state\"\"\"\n",
|
| 76 |
-
"\n",
|
| 77 |
-
" OPEN = 1\n",
|
| 78 |
-
" PENDING = 2\n",
|
| 79 |
-
" FINALIZING = 3\n",
|
| 80 |
-
" ARBITRATING = 4\n",
|
| 81 |
-
" CLOSED = 5\n",
|
| 82 |
-
"\n",
|
| 83 |
-
" def __str__(self) -> str:\n",
|
| 84 |
-
" \"\"\"Prints the market status.\"\"\"\n",
|
| 85 |
-
" return self.name.capitalize()\n",
|
| 86 |
-
"\n",
|
| 87 |
-
"\n",
|
| 88 |
-
"class MarketAttribute(Enum):\n",
|
| 89 |
-
" \"\"\"Attribute\"\"\"\n",
|
| 90 |
-
"\n",
|
| 91 |
-
" NUM_TRADES = \"Num_trades\"\n",
|
| 92 |
-
" WINNER_TRADES = \"Winner_trades\"\n",
|
| 93 |
-
" NUM_REDEEMED = \"Num_redeemed\"\n",
|
| 94 |
-
" INVESTMENT = \"Investment\"\n",
|
| 95 |
-
" FEES = \"Fees\"\n",
|
| 96 |
-
" MECH_CALLS = \"Mech_calls\"\n",
|
| 97 |
-
" MECH_FEES = \"Mech_fees\"\n",
|
| 98 |
-
" EARNINGS = \"Earnings\"\n",
|
| 99 |
-
" NET_EARNINGS = \"Net_earnings\"\n",
|
| 100 |
-
" REDEMPTIONS = \"Redemptions\"\n",
|
| 101 |
-
" ROI = \"ROI\"\n",
|
| 102 |
-
"\n",
|
| 103 |
-
" def __str__(self) -> str:\n",
|
| 104 |
-
" \"\"\"Prints the attribute.\"\"\"\n",
|
| 105 |
-
" return self.value\n",
|
| 106 |
-
"\n",
|
| 107 |
-
" def __repr__(self) -> str:\n",
|
| 108 |
-
" \"\"\"Prints the attribute representation.\"\"\"\n",
|
| 109 |
-
" return self.name\n",
|
| 110 |
-
"\n",
|
| 111 |
-
" @staticmethod\n",
|
| 112 |
-
" def argparse(s: str) -> \"MarketAttribute\":\n",
|
| 113 |
-
" \"\"\"Performs string conversion to MarketAttribute.\"\"\"\n",
|
| 114 |
-
" try:\n",
|
| 115 |
-
" return MarketAttribute[s.upper()]\n",
|
| 116 |
-
" except KeyError as e:\n",
|
| 117 |
-
" raise ValueError(f\"Invalid MarketAttribute: {s}\") from e\n",
|
| 118 |
-
"\n",
|
| 119 |
-
"\n",
|
| 120 |
-
"ALL_TRADES_STATS_DF_COLS = [\n",
|
| 121 |
-
" \"trader_address\",\n",
|
| 122 |
-
" \"trade_id\",\n",
|
| 123 |
-
" \"creation_timestamp\",\n",
|
| 124 |
-
" \"title\",\n",
|
| 125 |
-
" \"market_status\",\n",
|
| 126 |
-
" \"collateral_amount\",\n",
|
| 127 |
-
" \"outcome_index\",\n",
|
| 128 |
-
" \"trade_fee_amount\",\n",
|
| 129 |
-
" \"outcomes_tokens_traded\",\n",
|
| 130 |
-
" \"current_answer\",\n",
|
| 131 |
-
" \"is_invalid\",\n",
|
| 132 |
-
" \"winning_trade\",\n",
|
| 133 |
-
" \"earnings\",\n",
|
| 134 |
-
" \"redeemed\",\n",
|
| 135 |
-
" \"redeemed_amount\",\n",
|
| 136 |
-
" \"num_mech_calls\",\n",
|
| 137 |
-
" \"mech_fee_amount\",\n",
|
| 138 |
-
" \"net_earnings\",\n",
|
| 139 |
-
" \"roi\",\n",
|
| 140 |
-
"]\n",
|
| 141 |
-
"\n",
|
| 142 |
-
"SUMMARY_STATS_DF_COLS = [\n",
|
| 143 |
-
" \"trader_address\",\n",
|
| 144 |
-
" \"num_trades\",\n",
|
| 145 |
-
" \"num_winning_trades\",\n",
|
| 146 |
-
" \"num_redeemed\",\n",
|
| 147 |
-
" \"total_investment\",\n",
|
| 148 |
-
" \"total_trade_fees\",\n",
|
| 149 |
-
" \"num_mech_calls\",\n",
|
| 150 |
-
" \"total_mech_fees\",\n",
|
| 151 |
-
" \"total_earnings\",\n",
|
| 152 |
-
" \"total_redeemed_amount\",\n",
|
| 153 |
-
" \"total_net_earnings\",\n",
|
| 154 |
-
" \"total_net_earnings_wo_mech_fees\",\n",
|
| 155 |
-
" \"total_roi\",\n",
|
| 156 |
-
" \"total_roi_wo_mech_fees\",\n",
|
| 157 |
-
" \"mean_mech_calls_per_trade\",\n",
|
| 158 |
-
" \"mean_mech_fee_amount_per_trade\",\n",
|
| 159 |
-
"]\n",
|
| 160 |
-
"headers = {\n",
|
| 161 |
-
" \"Accept\": \"application/json, multipart/mixed\",\n",
|
| 162 |
-
" \"Content-Type\": \"application/json\",\n",
|
| 163 |
-
"}\n",
|
| 164 |
-
"\n",
|
| 165 |
-
"\n",
|
| 166 |
-
"omen_xdai_trades_query = Template(\n",
|
| 167 |
-
" \"\"\"\n",
|
| 168 |
-
" {\n",
|
| 169 |
-
" fpmmTrades(\n",
|
| 170 |
-
" where: {\n",
|
| 171 |
-
" type: Buy,\n",
|
| 172 |
-
" fpmm_: {\n",
|
| 173 |
-
" creator: \"${fpmm_creator}\"\n",
|
| 174 |
-
" creationTimestamp_gte: \"${fpmm_creationTimestamp_gte}\",\n",
|
| 175 |
-
" creationTimestamp_lt: \"${fpmm_creationTimestamp_lte}\"\n",
|
| 176 |
-
" },\n",
|
| 177 |
-
" creationTimestamp_gte: \"${creationTimestamp_gte}\",\n",
|
| 178 |
-
" creationTimestamp_lte: \"${creationTimestamp_lte}\"\n",
|
| 179 |
-
" id_gt: \"${id_gt}\"\n",
|
| 180 |
-
" }\n",
|
| 181 |
-
" first: ${first}\n",
|
| 182 |
-
" orderBy: id\n",
|
| 183 |
-
" orderDirection: asc\n",
|
| 184 |
-
" ) {\n",
|
| 185 |
-
" id\n",
|
| 186 |
-
" title\n",
|
| 187 |
-
" collateralToken\n",
|
| 188 |
-
" outcomeTokenMarginalPrice\n",
|
| 189 |
-
" oldOutcomeTokenMarginalPrice\n",
|
| 190 |
-
" type\n",
|
| 191 |
-
" creator {\n",
|
| 192 |
-
" id\n",
|
| 193 |
-
" }\n",
|
| 194 |
-
" creationTimestamp\n",
|
| 195 |
-
" collateralAmount\n",
|
| 196 |
-
" collateralAmountUSD\n",
|
| 197 |
-
" feeAmount\n",
|
| 198 |
-
" outcomeIndex\n",
|
| 199 |
-
" outcomeTokensTraded\n",
|
| 200 |
-
" transactionHash\n",
|
| 201 |
-
" fpmm {\n",
|
| 202 |
-
" id\n",
|
| 203 |
-
" outcomes\n",
|
| 204 |
-
" title\n",
|
| 205 |
-
" answerFinalizedTimestamp\n",
|
| 206 |
-
" currentAnswer\n",
|
| 207 |
-
" isPendingArbitration\n",
|
| 208 |
-
" arbitrationOccurred\n",
|
| 209 |
-
" openingTimestamp\n",
|
| 210 |
-
" condition {\n",
|
| 211 |
-
" id\n",
|
| 212 |
-
" }\n",
|
| 213 |
-
" }\n",
|
| 214 |
-
" }\n",
|
| 215 |
-
" }\n",
|
| 216 |
-
" \"\"\"\n",
|
| 217 |
-
")\n",
|
| 218 |
-
"\n",
|
| 219 |
-
"\n",
|
| 220 |
-
"conditional_tokens_gc_user_query = Template(\n",
|
| 221 |
-
" \"\"\"\n",
|
| 222 |
-
" {\n",
|
| 223 |
-
" user(id: \"${id}\") {\n",
|
| 224 |
-
" userPositions(\n",
|
| 225 |
-
" first: ${first}\n",
|
| 226 |
-
" where: {\n",
|
| 227 |
-
" id_gt: \"${userPositions_id_gt}\"\n",
|
| 228 |
-
" }\n",
|
| 229 |
-
" orderBy: id\n",
|
| 230 |
-
" ) {\n",
|
| 231 |
-
" balance\n",
|
| 232 |
-
" id\n",
|
| 233 |
-
" position {\n",
|
| 234 |
-
" id\n",
|
| 235 |
-
" conditionIds\n",
|
| 236 |
-
" }\n",
|
| 237 |
-
" totalBalance\n",
|
| 238 |
-
" wrappedBalance\n",
|
| 239 |
-
" }\n",
|
| 240 |
-
" }\n",
|
| 241 |
-
" }\n",
|
| 242 |
-
" \"\"\"\n",
|
| 243 |
-
")\n",
|
| 244 |
-
"\n",
|
| 245 |
-
"\n",
|
| 246 |
-
"def _to_content(q: str) -> dict[str, Any]:\n",
|
| 247 |
-
" \"\"\"Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes.\"\"\"\n",
|
| 248 |
-
" finalized_query = {\n",
|
| 249 |
-
" \"query\": q,\n",
|
| 250 |
-
" \"variables\": None,\n",
|
| 251 |
-
" \"extensions\": {\"headers\": None},\n",
|
| 252 |
-
" }\n",
|
| 253 |
-
" return finalized_query\n",
|
| 254 |
-
"\n",
|
| 255 |
-
"\n",
|
| 256 |
-
"def _query_omen_xdai_subgraph(\n",
|
| 257 |
-
" from_timestamp: float,\n",
|
| 258 |
-
" to_timestamp: float,\n",
|
| 259 |
-
" fpmm_from_timestamp: float,\n",
|
| 260 |
-
" fpmm_to_timestamp: float,\n",
|
| 261 |
-
") -> dict[str, Any]:\n",
|
| 262 |
-
" \"\"\"Query the subgraph.\"\"\"\n",
|
| 263 |
-
" url = \"https://api.thegraph.com/subgraphs/name/protofire/omen-xdai\"\n",
|
| 264 |
-
"\n",
|
| 265 |
-
" grouped_results = defaultdict(list)\n",
|
| 266 |
-
" id_gt = \"\"\n",
|
| 267 |
-
"\n",
|
| 268 |
-
" while True:\n",
|
| 269 |
-
" query = omen_xdai_trades_query.substitute(\n",
|
| 270 |
-
" fpmm_creator=FPMM_CREATOR.lower(),\n",
|
| 271 |
-
" creationTimestamp_gte=int(from_timestamp),\n",
|
| 272 |
-
" creationTimestamp_lte=int(to_timestamp),\n",
|
| 273 |
-
" fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),\n",
|
| 274 |
-
" fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),\n",
|
| 275 |
-
" first=QUERY_BATCH_SIZE,\n",
|
| 276 |
-
" id_gt=id_gt,\n",
|
| 277 |
-
" )\n",
|
| 278 |
-
" content_json = _to_content(query)\n",
|
| 279 |
-
" res = requests.post(url, headers=headers, json=content_json)\n",
|
| 280 |
-
" result_json = res.json()\n",
|
| 281 |
-
" user_trades = result_json.get(\"data\", {}).get(\"fpmmTrades\", [])\n",
|
| 282 |
-
"\n",
|
| 283 |
-
" if not user_trades:\n",
|
| 284 |
-
" break\n",
|
| 285 |
-
"\n",
|
| 286 |
-
" for trade in user_trades:\n",
|
| 287 |
-
" fpmm_id = trade.get(\"fpmm\", {}).get(\"id\")\n",
|
| 288 |
-
" grouped_results[fpmm_id].append(trade)\n",
|
| 289 |
-
"\n",
|
| 290 |
-
" id_gt = user_trades[len(user_trades) - 1][\"id\"]\n",
|
| 291 |
-
"\n",
|
| 292 |
-
" all_results = {\n",
|
| 293 |
-
" \"data\": {\n",
|
| 294 |
-
" \"fpmmTrades\": [\n",
|
| 295 |
-
" trade\n",
|
| 296 |
-
" for trades_list in grouped_results.values()\n",
|
| 297 |
-
" for trade in trades_list\n",
|
| 298 |
-
" ]\n",
|
| 299 |
-
" }\n",
|
| 300 |
-
" }\n",
|
| 301 |
-
"\n",
|
| 302 |
-
" return all_results\n",
|
| 303 |
-
"\n",
|
| 304 |
-
"\n",
|
| 305 |
-
"def _query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:\n",
|
| 306 |
-
" \"\"\"Query the subgraph.\"\"\"\n",
|
| 307 |
-
" url = \"https://api.thegraph.com/subgraphs/name/gnosis/conditional-tokens-gc\"\n",
|
| 308 |
-
"\n",
|
| 309 |
-
" all_results: dict[str, Any] = {\"data\": {\"user\": {\"userPositions\": []}}}\n",
|
| 310 |
-
" userPositions_id_gt = \"\"\n",
|
| 311 |
-
" while True:\n",
|
| 312 |
-
" query = conditional_tokens_gc_user_query.substitute(\n",
|
| 313 |
-
" id=creator.lower(),\n",
|
| 314 |
-
" first=QUERY_BATCH_SIZE,\n",
|
| 315 |
-
" userPositions_id_gt=userPositions_id_gt,\n",
|
| 316 |
-
" )\n",
|
| 317 |
-
" content_json = {\"query\": query}\n",
|
| 318 |
-
" res = requests.post(url, headers=headers, json=content_json)\n",
|
| 319 |
-
" result_json = res.json()\n",
|
| 320 |
-
" user_data = result_json.get(\"data\", {}).get(\"user\", {})\n",
|
| 321 |
-
"\n",
|
| 322 |
-
" if not user_data:\n",
|
| 323 |
-
" break\n",
|
| 324 |
-
"\n",
|
| 325 |
-
" user_positions = user_data.get(\"userPositions\", [])\n",
|
| 326 |
-
"\n",
|
| 327 |
-
" if user_positions:\n",
|
| 328 |
-
" all_results[\"data\"][\"user\"][\"userPositions\"].extend(user_positions)\n",
|
| 329 |
-
" userPositions_id_gt = user_positions[len(user_positions) - 1][\"id\"]\n",
|
| 330 |
-
" else:\n",
|
| 331 |
-
" break\n",
|
| 332 |
-
"\n",
|
| 333 |
-
" if len(all_results[\"data\"][\"user\"][\"userPositions\"]) == 0:\n",
|
| 334 |
-
" return {\"data\": {\"user\": None}}\n",
|
| 335 |
-
"\n",
|
| 336 |
-
" return all_results\n",
|
| 337 |
-
"\n",
|
| 338 |
-
"\n",
|
| 339 |
-
"def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]:\n",
|
| 340 |
-
" \"\"\"Convert hex to int\"\"\"\n",
|
| 341 |
-
" if isinstance(x, float):\n",
|
| 342 |
-
" return np.nan\n",
|
| 343 |
-
" elif isinstance(x, str):\n",
|
| 344 |
-
" if x == INVALID_ANSWER_HEX:\n",
|
| 345 |
-
" return -1\n",
|
| 346 |
-
" else:\n",
|
| 347 |
-
" return int(x, 16)\n",
|
| 348 |
-
"\n",
|
| 349 |
-
"\n",
|
| 350 |
-
"def wei_to_unit(wei: int) -> float:\n",
|
| 351 |
-
" \"\"\"Converts wei to currency unit.\"\"\"\n",
|
| 352 |
-
" return wei / 10**18\n",
|
| 353 |
-
"\n",
|
| 354 |
-
"\n",
|
| 355 |
-
"def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:\n",
|
| 356 |
-
" \"\"\"Returns whether the user has redeemed the position.\"\"\"\n",
|
| 357 |
-
" user_positions = user_json[\"data\"][\"user\"][\"userPositions\"]\n",
|
| 358 |
-
" outcomes_tokens_traded = int(fpmmTrade[\"outcomeTokensTraded\"])\n",
|
| 359 |
-
" condition_id = fpmmTrade[\"fpmm.condition.id\"]\n",
|
| 360 |
-
"\n",
|
| 361 |
-
" for position in user_positions:\n",
|
| 362 |
-
" position_condition_ids = position[\"position\"][\"conditionIds\"]\n",
|
| 363 |
-
" balance = int(position[\"balance\"])\n",
|
| 364 |
-
"\n",
|
| 365 |
-
" if condition_id in position_condition_ids:\n",
|
| 366 |
-
" if balance == 0:\n",
|
| 367 |
-
" return True\n",
|
| 368 |
-
" # return early\n",
|
| 369 |
-
" return False\n",
|
| 370 |
-
" return False\n"
|
| 371 |
-
]
|
| 372 |
-
},
|
| 373 |
-
{
|
| 374 |
-
"cell_type": "code",
|
| 375 |
-
"execution_count": null,
|
| 376 |
-
"metadata": {},
|
| 377 |
-
"outputs": [],
|
| 378 |
-
"source": [
|
| 379 |
-
"def determine_market_status(trade, current_answer):\n",
|
| 380 |
-
" \"\"\"Determine the market status of a trade.\"\"\"\n",
|
| 381 |
-
" if current_answer is np.nan and time.time() >= int(trade[\"fpmm.openingTimestamp\"]):\n",
|
| 382 |
-
" return MarketState.PENDING\n",
|
| 383 |
-
" elif current_answer == np.nan:\n",
|
| 384 |
-
" return MarketState.OPEN\n",
|
| 385 |
-
" elif trade[\"fpmm.isPendingArbitration\"]:\n",
|
| 386 |
-
" return MarketState.ARBITRATING\n",
|
| 387 |
-
" elif time.time() < int(trade[\"fpmm.answerFinalizedTimestamp\"]):\n",
|
| 388 |
-
" return MarketState.FINALIZING\n",
|
| 389 |
-
" return MarketState.CLOSED"
|
| 390 |
-
]
|
| 391 |
-
},
|
| 392 |
-
{
|
| 393 |
-
"cell_type": "code",
|
| 394 |
-
"execution_count": null,
|
| 395 |
-
"metadata": {},
|
| 396 |
-
"outputs": [],
|
| 397 |
-
"source": [
|
| 398 |
-
"all_traders = []\n",
|
| 399 |
-
"\n",
|
| 400 |
-
"for trader_address in tqdm(\n",
|
| 401 |
-
" fpmmTrades[\"trader_address\"].unique(),\n",
|
| 402 |
-
" total=len(fpmmTrades[\"trader_address\"].unique()),\n",
|
| 403 |
-
" desc=\"Analysing creators\"\n",
|
| 404 |
-
"):\n",
|
| 405 |
-
" trades = fpmmTrades[fpmmTrades[\"trader_address\"] == trader_address]\n",
|
| 406 |
-
" tools_usage = tools[tools[\"trader_address\"].str.lower() == trader_address]\n",
|
| 407 |
-
"\n",
|
| 408 |
-
" # Prepare the DataFrame\n",
|
| 409 |
-
" trades_df = pd.DataFrame(columns=ALL_TRADES_STATS_DF_COLS)\n",
|
| 410 |
-
"\n",
|
| 411 |
-
" if trades.empty:\n",
|
| 412 |
-
" continue\n",
|
| 413 |
-
"\n",
|
| 414 |
-
" # Fetch user's conditional tokens gc graph\n",
|
| 415 |
-
" try:\n",
|
| 416 |
-
" user_json = _query_conditional_tokens_gc_subgraph(trader_address)\n",
|
| 417 |
-
" except Exception as e:\n",
|
| 418 |
-
" print(f\"Error fetching user data: {e}\")\n",
|
| 419 |
-
" raise e\n",
|
| 420 |
-
" \n",
|
| 421 |
-
" break"
|
| 422 |
-
]
|
| 423 |
-
},
|
| 424 |
-
{
|
| 425 |
-
"cell_type": "code",
|
| 426 |
-
"execution_count": null,
|
| 427 |
-
"metadata": {},
|
| 428 |
-
"outputs": [],
|
| 429 |
-
"source": [
|
| 430 |
-
"for i, trade in tqdm(trades.iterrows(), total=len(trades), desc=\"Analysing trades\"):\n",
|
| 431 |
-
" if not trade['fpmm.currentAnswer']:\n",
|
| 432 |
-
" print(f\"Skipping trade {i} because currentAnswer is NaN\")\n",
|
| 433 |
-
" continue\n",
|
| 434 |
-
"\n",
|
| 435 |
-
" creation_timestamp_utc = datetime.datetime.fromtimestamp(\n",
|
| 436 |
-
" int(trade[\"creationTimestamp\"]), tz=datetime.timezone.utc\n",
|
| 437 |
-
" )\n",
|
| 438 |
-
" collateral_amount = wei_to_unit(float(trade[\"collateralAmount\"]))\n",
|
| 439 |
-
" fee_amount = wei_to_unit(float(trade[\"feeAmount\"]))\n",
|
| 440 |
-
" outcome_tokens_traded = wei_to_unit(float(trade[\"outcomeTokensTraded\"]))\n",
|
| 441 |
-
" earnings, winner_trade = (0, False)\n",
|
| 442 |
-
" redemption = _is_redeemed(user_json, trade)\n",
|
| 443 |
-
" current_answer = trade[\"fpmm.currentAnswer\"]\n",
|
| 444 |
-
" # Determine market status\n",
|
| 445 |
-
" market_status = determine_market_status(trade, current_answer)\n",
|
| 446 |
-
"\n",
|
| 447 |
-
" # Skip non-closed markets\n",
|
| 448 |
-
" if market_status != MarketState.CLOSED:\n",
|
| 449 |
-
" print(\n",
|
| 450 |
-
" f\"Skipping trade {i} because market is not closed. Market Status: {market_status}\"\n",
|
| 451 |
-
" )\n",
|
| 452 |
-
" continue\n",
|
| 453 |
-
" current_answer = convert_hex_to_int(current_answer)\n",
|
| 454 |
-
"\n",
|
| 455 |
-
" # Compute invalidity\n",
|
| 456 |
-
" is_invalid = current_answer == INVALID_ANSWER\n",
|
| 457 |
-
"\n",
|
| 458 |
-
" # Compute earnings and winner trade status\n",
|
| 459 |
-
" if is_invalid:\n",
|
| 460 |
-
" earnings = collateral_amount\n",
|
| 461 |
-
" winner_trade = False\n",
|
| 462 |
-
" elif int(trade[\"outcomeIndex\"]) == current_answer:\n",
|
| 463 |
-
" earnings = outcome_tokens_traded\n",
|
| 464 |
-
" winner_trade = True\n",
|
| 465 |
-
"\n",
|
| 466 |
-
" # Compute mech calls\n",
|
| 467 |
-
" num_mech_calls = (\n",
|
| 468 |
-
" tools_usage[\"prompt_request\"].apply(lambda x: trade[\"title\"] in x).sum()\n",
|
| 469 |
-
" )\n",
|
| 470 |
-
" net_earnings = (\n",
|
| 471 |
-
" earnings\n",
|
| 472 |
-
" - fee_amount\n",
|
| 473 |
-
" - (num_mech_calls * DEFAULT_MECH_FEE)\n",
|
| 474 |
-
" - collateral_amount\n",
|
| 475 |
-
" )\n",
|
| 476 |
-
"\n",
|
| 477 |
-
" break"
|
| 478 |
-
]
|
| 479 |
-
},
|
| 480 |
-
{
|
| 481 |
-
"cell_type": "code",
|
| 482 |
-
"execution_count": null,
|
| 483 |
"metadata": {},
|
| 484 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
"source": [
|
| 486 |
-
"
|
| 487 |
-
"
|
| 488 |
-
"# fpmmTrades[\"trader_address\"].unique(),\n",
|
| 489 |
-
"# total=len(fpmmTrades[\"trader_address\"].unique()),\n",
|
| 490 |
-
"# desc=\"Analysing creators\",\n",
|
| 491 |
-
"# ):\n",
|
| 492 |
-
"\n",
|
| 493 |
-
"# trades = fpmmTrades[fpmmTrades[\"trader_address\"] == trader_address]\n",
|
| 494 |
-
"# tools_usage = tools[tools[\"trader_address\"] == trader_address]\n",
|
| 495 |
"\n",
|
| 496 |
-
"
|
| 497 |
-
"
|
| 498 |
-
"# if trades.empty:\n",
|
| 499 |
-
"# continue\n",
|
| 500 |
"\n",
|
| 501 |
-
"
|
| 502 |
-
"
|
| 503 |
-
"# user_json = _query_conditional_tokens_gc_subgraph(trader_address)\n",
|
| 504 |
-
"# except Exception as e:\n",
|
| 505 |
-
"# print(f\"Error fetching user data: {e}\")\n",
|
| 506 |
-
"# raise e\n",
|
| 507 |
-
"\n",
|
| 508 |
-
"# # Iterate over the trades\n",
|
| 509 |
-
"# for i, trade in tqdm(trades.iterrows(), total=len(trades), desc=\"Analysing trades\"):\n",
|
| 510 |
-
"# try:\n",
|
| 511 |
-
"# if not trade['fpmm.currentAnswer']:\n",
|
| 512 |
-
"# print(f\"Skipping trade {i} because currentAnswer is NaN\")\n",
|
| 513 |
-
"# continue\n",
|
| 514 |
-
"# # Parsing and computing shared values\n",
|
| 515 |
-
"# creation_timestamp_utc = datetime.datetime.fromtimestamp(\n",
|
| 516 |
-
"# int(trade[\"creationTimestamp\"]), tz=datetime.timezone.utc\n",
|
| 517 |
-
"# )\n",
|
| 518 |
-
"# collateral_amount = wei_to_unit(float(trade[\"collateralAmount\"]))\n",
|
| 519 |
-
"# fee_amount = wei_to_unit(float(trade[\"feeAmount\"]))\n",
|
| 520 |
-
"# outcome_tokens_traded = wei_to_unit(float(trade[\"outcomeTokensTraded\"]))\n",
|
| 521 |
-
"# earnings, winner_trade = (0, False)\n",
|
| 522 |
-
"# redemption = _is_redeemed(user_json, trade)\n",
|
| 523 |
-
"# current_answer = trade[\"fpmm.currentAnswer\"]\n",
|
| 524 |
-
"# # Determine market status\n",
|
| 525 |
-
"# market_status = determine_market_status(trade, current_answer)\n",
|
| 526 |
-
"\n",
|
| 527 |
-
"# # Skip non-closed markets\n",
|
| 528 |
-
"# if market_status != MarketState.CLOSED:\n",
|
| 529 |
-
"# print(\n",
|
| 530 |
-
"# f\"Skipping trade {i} because market is not closed. Market Status: {market_status}\"\n",
|
| 531 |
-
"# )\n",
|
| 532 |
-
"# continue\n",
|
| 533 |
-
"# current_answer = convert_hex_to_int(current_answer)\n",
|
| 534 |
-
"\n",
|
| 535 |
-
"# # Compute invalidity\n",
|
| 536 |
-
"# is_invalid = current_answer == INVALID_ANSWER\n",
|
| 537 |
-
"\n",
|
| 538 |
-
"# # Compute earnings and winner trade status\n",
|
| 539 |
-
"# if is_invalid:\n",
|
| 540 |
-
"# earnings = collateral_amount\n",
|
| 541 |
-
"# winner_trade = False\n",
|
| 542 |
-
"# elif trade[\"outcomeIndex\"] == current_answer:\n",
|
| 543 |
-
"# earnings = outcome_tokens_traded\n",
|
| 544 |
-
"# winner_trade = True\n",
|
| 545 |
-
"\n",
|
| 546 |
-
"# # Compute mech calls\n",
|
| 547 |
-
"# num_mech_calls = (\n",
|
| 548 |
-
"# tools_usage[\"prompt_request\"].apply(lambda x: trade[\"title\"] in x).sum()\n",
|
| 549 |
-
"# )\n",
|
| 550 |
-
"# net_earnings = (\n",
|
| 551 |
-
"# earnings\n",
|
| 552 |
-
"# - fee_amount\n",
|
| 553 |
-
"# - (num_mech_calls * DEFAULT_MECH_FEE)\n",
|
| 554 |
-
"# - collateral_amount\n",
|
| 555 |
-
"# )\n",
|
| 556 |
-
"\n",
|
| 557 |
-
"# # Assign values to DataFrame\n",
|
| 558 |
-
"# trades_df.loc[i] = {\n",
|
| 559 |
-
"# \"trader_address\": trader_address,\n",
|
| 560 |
-
"# \"trade_id\": trade[\"id\"],\n",
|
| 561 |
-
"# \"market_status\": market_status.name,\n",
|
| 562 |
-
"# \"creation_timestamp\": creation_timestamp_utc,\n",
|
| 563 |
-
"# \"title\": trade[\"title\"],\n",
|
| 564 |
-
"# \"collateral_amount\": collateral_amount,\n",
|
| 565 |
-
"# \"outcome_index\": trade[\"outcomeIndex\"],\n",
|
| 566 |
-
"# \"trade_fee_amount\": fee_amount,\n",
|
| 567 |
-
"# \"outcomes_tokens_traded\": outcome_tokens_traded,\n",
|
| 568 |
-
"# \"current_answer\": current_answer,\n",
|
| 569 |
-
"# \"is_invalid\": is_invalid,\n",
|
| 570 |
-
"# \"winning_trade\": winner_trade,\n",
|
| 571 |
-
"# \"earnings\": earnings,\n",
|
| 572 |
-
"# \"redeemed\": redemption,\n",
|
| 573 |
-
"# \"redeemed_amount\": earnings if redemption else 0,\n",
|
| 574 |
-
"# \"num_mech_calls\": num_mech_calls,\n",
|
| 575 |
-
"# \"mech_fee_amount\": num_mech_calls * DEFAULT_MECH_FEE,\n",
|
| 576 |
-
"# \"net_earnings\": net_earnings,\n",
|
| 577 |
-
"# \"roi\": net_earnings / (collateral_amount + fee_amount + num_mech_calls * DEFAULT_MECH_FEE),\n",
|
| 578 |
-
"# }\n",
|
| 579 |
-
"# except Exception as e:\n",
|
| 580 |
-
"# print(f\"Error processing trade {i}: {e}\")\n",
|
| 581 |
-
"# raise e"
|
| 582 |
]
|
| 583 |
},
|
| 584 |
{
|
| 585 |
"cell_type": "code",
|
| 586 |
-
"execution_count":
|
| 587 |
-
"metadata": {},
|
| 588 |
-
"outputs": [],
|
| 589 |
-
"source": [
|
| 590 |
-
"import pandas as pd"
|
| 591 |
-
]
|
| 592 |
-
},
|
| 593 |
-
{
|
| 594 |
-
"cell_type": "code",
|
| 595 |
-
"execution_count": 2,
|
| 596 |
-
"metadata": {},
|
| 597 |
-
"outputs": [],
|
| 598 |
-
"source": [
|
| 599 |
-
"trades = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/all_trades_profitability.parquet')\n",
|
| 600 |
-
"tools = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/tools.parquet')"
|
| 601 |
-
]
|
| 602 |
-
},
|
| 603 |
-
{
|
| 604 |
-
"cell_type": "code",
|
| 605 |
-
"execution_count": 3,
|
| 606 |
"metadata": {},
|
| 607 |
"outputs": [
|
| 608 |
{
|
|
@@ -617,112 +68,13 @@
|
|
| 617 |
" dtype='object')"
|
| 618 |
]
|
| 619 |
},
|
| 620 |
-
"execution_count":
|
| 621 |
"metadata": {},
|
| 622 |
"output_type": "execute_result"
|
| 623 |
}
|
| 624 |
],
|
| 625 |
"source": [
|
| 626 |
-
"
|
| 627 |
-
]
|
| 628 |
-
},
|
| 629 |
-
{
|
| 630 |
-
"cell_type": "code",
|
| 631 |
-
"execution_count": 4,
|
| 632 |
-
"metadata": {},
|
| 633 |
-
"outputs": [],
|
| 634 |
-
"source": [
|
| 635 |
-
"trades = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/all_trades_profitability.parquet')\n",
|
| 636 |
-
"trades['creation_timestamp'] = pd.to_datetime(trades['creation_timestamp'], unit='s')\n",
|
| 637 |
-
"trades = trades[trades['creation_timestamp'].dt.year == 2024]\n",
|
| 638 |
-
"trades_winning = trades.groupby(['title','winning_trade']).size().unstack().fillna(0)\n",
|
| 639 |
-
"trades_winning_perc = trades_winning[True] / (trades_winning[True] + trades_winning[False])\n",
|
| 640 |
-
"trades_winning_perc = trades_winning_perc.reset_index()\n",
|
| 641 |
-
"trades_winning_perc.columns = ['title', 'winning_trade_perc']\n",
|
| 642 |
-
"def bucket_winning_trade_perc(x):\n",
|
| 643 |
-
" if x < 0.1:\n",
|
| 644 |
-
" return 0.1\n",
|
| 645 |
-
" elif x < 0.2:\n",
|
| 646 |
-
" return 0.2\n",
|
| 647 |
-
" elif x < 0.3:\n",
|
| 648 |
-
" return 0.3\n",
|
| 649 |
-
" elif x < 0.4:\n",
|
| 650 |
-
" return 0.4\n",
|
| 651 |
-
" elif x < 0.5:\n",
|
| 652 |
-
" return 0.5\n",
|
| 653 |
-
" elif x < 0.6:\n",
|
| 654 |
-
" return 0.6\n",
|
| 655 |
-
" elif x < 0.7:\n",
|
| 656 |
-
" return 0.7\n",
|
| 657 |
-
" elif x < 0.8:\n",
|
| 658 |
-
" return 0.8\n",
|
| 659 |
-
" elif x < 0.9:\n",
|
| 660 |
-
" return 0.9\n",
|
| 661 |
-
" else:\n",
|
| 662 |
-
" return 1\n",
|
| 663 |
-
"\n",
|
| 664 |
-
"trades_winning_perc['winning_trade_perc_bucket'] = trades_winning_perc['winning_trade_perc'].apply(bucket_winning_trade_perc)\n",
|
| 665 |
-
"trades_winning_perc['winning_trade_perc_bucket'].plot(kind='hist', bins=10)"
|
| 666 |
-
]
|
| 667 |
-
},
|
| 668 |
-
{
|
| 669 |
-
"cell_type": "code",
|
| 670 |
-
"execution_count": 8,
|
| 671 |
-
"metadata": {},
|
| 672 |
-
"outputs": [],
|
| 673 |
-
"source": []
|
| 674 |
-
},
|
| 675 |
-
{
|
| 676 |
-
"cell_type": "code",
|
| 677 |
-
"execution_count": 13,
|
| 678 |
-
"metadata": {},
|
| 679 |
-
"outputs": [],
|
| 680 |
-
"source": []
|
| 681 |
-
},
|
| 682 |
-
{
|
| 683 |
-
"cell_type": "code",
|
| 684 |
-
"execution_count": 16,
|
| 685 |
-
"metadata": {},
|
| 686 |
-
"outputs": [],
|
| 687 |
-
"source": [
|
| 688 |
-
"\n"
|
| 689 |
-
]
|
| 690 |
-
},
|
| 691 |
-
{
|
| 692 |
-
"cell_type": "code",
|
| 693 |
-
"execution_count": 20,
|
| 694 |
-
"metadata": {},
|
| 695 |
-
"outputs": [],
|
| 696 |
-
"source": []
|
| 697 |
-
},
|
| 698 |
-
{
|
| 699 |
-
"cell_type": "code",
|
| 700 |
-
"execution_count": 21,
|
| 701 |
-
"metadata": {},
|
| 702 |
-
"outputs": [
|
| 703 |
-
{
|
| 704 |
-
"data": {
|
| 705 |
-
"text/plain": [
|
| 706 |
-
"<Axes: ylabel='Frequency'>"
|
| 707 |
-
]
|
| 708 |
-
},
|
| 709 |
-
"execution_count": 21,
|
| 710 |
-
"metadata": {},
|
| 711 |
-
"output_type": "execute_result"
|
| 712 |
-
},
|
| 713 |
-
{
|
| 714 |
-
"data": {
|
| 715 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkx0lEQVR4nO3de3BU9f3/8deGsAvBXAiYbFIidxQEZASNEbAiGQJhKAgzFUEMNoWqiVUiKnhDxRJERdQitBYTmIIoLaICRiHcSg1eIoiCIlcjTTagSDaELyGX8/vDHzuuXCSbTXb58HzM7Iznsmff21ObZ8+eTWyWZVkCAAAwVEigBwAAAGhIxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAo4UGeoBgUFtbq+LiYoWHh8tmswV6HAAAcB4sy1J5ebni4+MVEnL26zfEjqTi4mIlJCQEegwAAOCD7777Tm3atDnrdmJHUnh4uKSf/sOKiIgI8DQAAOB8uN1uJSQkeH6Onw2xI3k+uoqIiCB2AAC4wPzaLSjcoAwAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKOFBnoAAGho7aasCvQIdXZg5tBAjwAYgys7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADBaaKAHMF27KasCPUKdHZg5NNAjAADgN1zZAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYLaCxk52drWuuuUbh4eGKiYnRiBEjtGvXLq99brzxRtlsNq/HnXfe6bVPUVGRhg4dqrCwMMXExOiBBx5QdXV1Y74VAAAQpEID+eIbN25URkaGrrnmGlVXV+vhhx/WoEGDtHPnTrVo0cKz34QJE/TUU095lsPCwjz/XFNTo6FDh8rpdOrDDz9USUmJbr/9djVt2lQzZsxo1PcDAACCT0BjJy8vz2s5NzdXMTExKiws1A033OBZHxYWJqfTecZjfPDBB9q5c6fWrl2r2NhY9erVS9OnT9dDDz2kJ554Qna7vUHfAwAACG5Bdc9OWVmZJCk6Otpr/eLFi9W6dWt1795dU6dO1fHjxz3bCgoK1KNHD8XGxnrWpaSkyO12a8eOHWd8ncrKSrndbq8HAAAwU0Cv7PxcbW2t7rvvPvXt21fdu3f3rB8zZozatm2r+Ph4bd++XQ899JB27dql5cuXS5JcLpdX6EjyLLtcrjO+VnZ2tp588skGeicAACCYBE3sZGRk6Msvv9TmzZu91k+cONHzzz169FBcXJwGDhyovXv3qmPHjj691tSpU5WVleVZdrvdSkhI8G1wAAAQ1ILiY6zMzEytXLlS69evV5s2bc65b2JioiRpz549kiSn06nS0lKvfU4tn+0+H4fDoYiICK8HAAAwU0Bjx7IsZWZm6q233tK6devUvn37X33Otm3bJElxcXGSpKSkJH3xxRc6dOiQZ581a9YoIiJC3bp1a5C5AQDAhSOgH2NlZGRoyZIlevvttxUeHu65xyYyMlLNmzfX3r17tWTJEqWmpqpVq1bavn27Jk2apBtuuEE9e/aUJA0aNEjdunXTuHHjNGvWLLlcLj366KPKyMiQw+EI5NsDAABBIKCxM2/ePEk//eLAn8vJydH48eNlt9u1du1azZkzRxUVFUpISNCoUaP06KOPevZt0qSJVq5cqbvuuktJSUlq0aKF0tLSvH4vDwAApmg3ZVWgR6izAzOHBvT1Axo7lmWdc3tCQoI2btz4q8dp27atVq9e7a+xAACAQYLiBmUAAICGQuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjhQZ6AAAXlnZTVgV6BACoE67sAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAav2cHAILQhfj7jA7MHBroEYAz4soOAAAwGrEDAACMRuwAAACjETsAAMBoAY2d7OxsXXPNNQoPD1dMTIxGjBihXbt2ee1z4sQJZWRkqFWrVrrkkks0atQolZaWeu1TVFSkoUOHKiwsTDExMXrggQdUXV3dmG8FAAAEqYDGzsaNG5WRkaEtW7ZozZo1qqqq0qBBg1RRUeHZZ9KkSXr33Xe1bNkybdy4UcXFxRo5cqRne01NjYYOHaqTJ0/qww8/1MKFC5Wbm6vHH388EG8JAAAEmYB+9TwvL89rOTc3VzExMSosLNQNN9ygsrIyLViwQEuWLNFNN90kScrJyVHXrl21ZcsWXXfddfrggw+0c+dOrV27VrGxserVq5emT5+uhx56SE888YTsdnsg3hoAAAgSQXXPTllZmSQpOjpaklRYWKiqqiolJyd79rniiit02WWXqaCgQJJUUFCgHj16KDY21rNPSkqK3G63duzY0YjTAwCAYBQ0v1SwtrZW9913n/r27avu3btLklwul+x2u6Kiorz2jY2Nlcvl8uzz89A5tf3UtjOprKxUZWWlZ9ntdvvrbQAAgCATNFd2MjIy9OWXX2rp0qUN/lrZ2dmKjIz0PBISEhr8NQEAQGAERexkZmZq5cqVWr9+vdq0aeNZ73Q6dfLkSR09etRr/9LSUjmdTs8+v/x21qnlU/v80tSpU1VWVuZ5fPfdd358NwAAIJgENHYsy1JmZqbeeustrVu3Tu3bt/fa3rt3bzVt2lT5+fmedbt27VJRUZGSkpIkSUlJSfriiy906NAhzz5r1qxRRESEunXrdsbXdTgcioiI8HoAAAAzBfSenYyMDC1ZskRvv/22wsPDPffYREZGqnnz5oqMjFR6erqysrIUHR2tiIgI3XPPPUpKStJ1110nSRo0aJC6deumcePGadasWXK5XHr00UeVkZEhh8MRyLcHAACCQEBjZ968eZKkG2+80Wt9Tk6Oxo8fL0l64YUXFBISolGjRqmyslIpKSl65ZVXPPs2adJEK1eu1F133aWkpCS1aNFCaWlpeuqppxrrbQAAgCAW0NixLOtX92nWrJnmzp2ruXPnnnWftm3bavXq1f4cDQAAGCIoblAGAABoKEHze3aAi027KasCPQIAXBS4sgMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjMa3sQAAfnEhfsPwwMyhgR4BjYArOwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwmk+xs2/fPn/PAQAA0CB8ip1OnTppwIAB+uc//6kTJ074eyYAAAC/8Sl2PvvsM/Xs2VNZWVlyOp3605/+pI8//tjfswEAANSbT7HTq1cvvfjiiyouLtZrr72mkpIS9evXT927d9fs2bN1+PBhf88JAADgk3rdoBwaGqqRI0dq2bJleuaZZ7Rnzx5NnjxZCQkJuv3221VSUuKvOQEAAHxSr9j59NNPdffddysuLk6zZ8/W5MmTtXfvXq1Zs0bFxcUaPny4v+YEAADwSagvT5o9e7ZycnK0a9cupaamatGiRUpNTVVIyE/t1L59e+Xm5qpdu3b+nBUAAKDOfIqdefPm6Q9/+IPGjx+vuLi4M+4TExOjBQsW1Gs4AACA+vIpdnbv3v2r+9jtdqWlpflyeAAAAL/x6Z6dnJwcLVu27LT1y5Yt08KFC+s9FAAAgL/4FDvZ2dlq3br1aetjYmI0Y8aMeg8FAADgLz7FTlFRkdq3b3/a+rZt26qoqKjeQwEAAPiLT7ETExOj7du3n7b+888/V6tWreo9FAAAgL/4FDu33nqr/vznP2v9+vWqqalRTU2N1q1bp3vvvVejR4/294wAAAA+8+nbWNOnT9eBAwc0cOBAhYb+dIja2lrdfvvt3LMDAACCik+xY7fb9cYbb2j69On6/PPP1bx5c/Xo0UNt27b193wAADSYdlNWBXoENAKfYueULl26qEuXLv6aBQAAwO98ip2amhrl5uYqPz9fhw4dUm1trdf2devW+WU4AACA+vIpdu69917l5uZq6NCh6t69u2w2m7/nAgAA8AufYmfp0qV68803lZqa6u95AAAA/Mqnr57b7XZ16tTJ37MAAAD4nU+xc//99+vFF1+UZVn+ngcAAMCvfPoYa/PmzVq/fr3ee+89XXnllWratKnX9uXLl/tlOAAAgPryKXaioqJ08803+3sWAAAAv/MpdnJycvw9BwAAQIPw6Z4dSaqurtbatWv1t7/9TeXl5ZKk4uJiHTt2zG/DAQAA1JdPsfPtt9+qR48eGj58uDIyMnT48GFJ0jPPPKPJkyef93E2bdqkYcOGKT4+XjabTStWrPDaPn78eNlsNq/H4MGDvfY5cuSIxo4dq4iICEVFRSk9PZ3gAgAAHj7Fzr333qs+ffroxx9/VPPmzT3rb775ZuXn55/3cSoqKnTVVVdp7ty5Z91n8ODBKikp8Txef/11r+1jx47Vjh07tGbNGq1cuVKbNm3SxIkT6/6mAACAkXy6Z+c///mPPvzwQ9ntdq/17dq10//+97/zPs6QIUM0ZMiQc+7jcDjkdDrPuO2rr75SXl6ePvnkE/Xp00eS9PLLLys1NVXPPfec4uPjz3sWAABgJp+u7NTW1qqmpua09QcPHlR4eHi9h/q5DRs2KCYmRpdffrnuuusu/fDDD55tBQUFioqK8oSOJCUnJyskJEQfffTRWY9ZWVkpt9vt9QAAAGbyKXYGDRqkOXPmeJZtNpuOHTumadOm+fVPSAwePFiLFi1Sfn6+nnnmGW3cuFFDhgzxhJbL5VJMTIzXc0JDQxUdHS2Xy3XW42ZnZysyMtLzSEhI8NvMAAAguPj0Mdbzzz+vlJQUdevWTSdOnNCYMWO0e/dutW7d+rR7aupj9OjRnn/u0aOHevbsqY4dO2rDhg0aOHCgz8edOnWqsrKyPMtut5vgAQDAUD7FTps2bfT5559r6dKl2r59u44dO6b09HSNHTvW64Zlf+vQoYNat26tPXv2aODAgXI6nTp06JDXPtXV1Tpy5MhZ7/ORfroPyOFwNNicAAAgePgUO9JPHxfddttt/pzlVx08eFA//PCD4uLiJElJSUk6evSoCgsL1bt3b0nSunXrVFtbq8TExEadDQAABCefYmfRokXn3H777bef13GOHTumPXv2eJb379+vbdu2KTo6WtHR0XryySc1atQoOZ1O7d27Vw8++KA6deqklJQUSVLXrl01ePBgTZgwQfPnz1dVVZUyMzM1evRovokFAAAk+Rg79957r9dyVVWVjh8/LrvdrrCwsPOOnU8//VQDBgzwLJ+6jyYtLU3z5s3T9u3btXDhQh09elTx8fEaNGiQpk+f7vUR1OLFi5WZmamBAwcqJCREo0aN0ksvveTL2wIAAAbyKXZ+/PHH09bt3r1bd911lx544IHzPs6NN94oy7LOuv3999//1WNER0dryZIl5/2aAADg4uLz38b6pc6dO2vmzJmnXfUBAAAIJL/FjvTTTcvFxcX+PCQAAEC9+PQx1jvvvOO1bFmWSkpK9Ne//lV9+/b1y2AAAAD+4FPsjBgxwmvZZrPp0ksv1U033aTnn3/eH3MBAAD4hU+xU1tb6+85AAAAGoRf79kBAAAINj5d2fn535X6NbNnz/blJQAAAPzCp9jZunWrtm7dqqqqKl1++eWSpG+++UZNmjTR1Vdf7dnPZrP5Z0oAAAAf+RQ7w4YNU3h4uBYuXKiWLVtK+ukXDd5xxx3q37+/7r//fr8OCQAA4Cuf7tl5/vnnlZ2d7QkdSWrZsqWefvppvo0FAACCik+x43a7dfjw4dPWHz58WOXl5fUeCgAAwF98ip2bb75Zd9xxh5YvX66DBw/q4MGD+ve//6309HSNHDnS3zMCAAD4zKd7dubPn6/JkydrzJgxqqqq+ulAoaFKT0/Xs88+69cBAQAA6sOn2AkLC9Mrr7yiZ599Vnv37pUkdezYUS1atPDrcAAAAPVVr18qWFJSopKSEnXu3FktWrSQZVn+mgsAAMAvfIqdH374QQMHDlSXLl2UmpqqkpISSVJ6ejpfOwcAAEHFp9iZNGmSmjZtqqKiIoWFhXnW33LLLcrLy/PbcAAAAPXl0z07H3zwgd5//321adPGa33nzp317bff+mUwoC7aTVkV6BEAAEHKpys7FRUVXld0Tjly5IgcDke9hwIAAPAXn67s9O/fX4sWLdL06dMl/fQ3sGprazVr1iwNGDDArwOi8XGVBABgEp9iZ9asWRo4cKA+/fRTnTx5Ug8++KB27NihI0eO6L///a+/ZwQAAPCZTx9jde/eXd9884369eun4cOHq6KiQiNHjtTWrVvVsWNHf88IAADgszpf2amqqtLgwYM1f/58PfLIIw0xEwAAgN/U+cpO06ZNtX379oaYBQAAwO98+hjrtttu04IFC/w9CwAAgN/5dINydXW1XnvtNa1du1a9e/c+7W9izZ492y/DAQAA1FedYmffvn1q166dvvzyS1199dWSpG+++cZrH5vN5r/pAAAA6qlOsdO5c2eVlJRo/fr1kn768xAvvfSSYmNjG2Q4AACA+qrTPTu//Kvm7733nioqKvw6EAAAgD/5dIPyKb+MHwAAgGBTp9ix2Wyn3ZPDPToAACCY1emeHcuyNH78eM8f+zxx4oTuvPPO076NtXz5cv9NCAAAUA91ip20tDSv5dtuu82vwwAAAPhbnWInJyenoeYAAABoEPW6QRkAACDYETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMFNHY2bdqkYcOGKT4+XjabTStWrPDablmWHn/8ccXFxal58+ZKTk7W7t27vfY5cuSIxo4dq4iICEVFRSk9PV3Hjh1rxHcBAACCWUBjp6KiQldddZXmzp17xu2zZs3SSy+9pPnz5+ujjz5SixYtlJKSohMnTnj2GTt2rHbs2KE1a9Zo5cqV2rRpkyZOnNhYbwEAAAS50EC++JAhQzRkyJAzbrMsS3PmzNGjjz6q4cOHS5IWLVqk2NhYrVixQqNHj9ZXX32lvLw8ffLJJ+rTp48k6eWXX1Zqaqqee+45xcfHN9p7AQAAwSlo79nZv3+/XC6XkpOTPesiIyOVmJiogoICSVJBQYGioqI8oSNJycnJCgkJ0UcffXTWY1dWVsrtdns9AACAmYI2dlwulyQpNjbWa31sbKxnm8vlUkxMjNf20NBQRUdHe/Y5k+zsbEVGRnoeCQkJfp4eAAAEi6CNnYY0depUlZWVeR7fffddoEcCAAANJGhjx+l0SpJKS0u91peWlnq2OZ1OHTp0yGt7dXW1jhw54tnnTBwOhyIiIrweAADATEEbO+3bt5fT6VR+fr5nndvt1kcffaSkpCRJUlJSko4eParCwkLPPuvWrVNtba0SExMbfWYAABB8AvptrGPHjmnPnj2e5f3792vbtm2Kjo7WZZddpvvuu09PP/20OnfurPbt2+uxxx5TfHy8RowYIUnq2rWrBg8erAkTJmj+/PmqqqpSZmamRo8ezTexAACApADHzqeffqoBAwZ4lrOysiRJaWlpys3N1YMPPqiKigpNnDhRR48eVb9+/ZSXl6dmzZp5nrN48WJlZmZq4MCBCgkJ0ahRo/TSSy81+nsBAADByWZZlhXoIQLN7XYrMjJSZWVlfr9/p92UVX49HgAAF5oDM4c2yHHP9+d30N6zAwAA4A/EDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAowV17DzxxBOy2WxejyuuuMKz/cSJE8rIyFCrVq10ySWXaNSoUSotLQ3gxAAAINgEdexI0pVXXqmSkhLPY/PmzZ5tkyZN0rvvvqtly5Zp48aNKi4u1siRIwM4LQAACDahgR7g14SGhsrpdJ62vqysTAsWLNCSJUt00003SZJycnLUtWtXbdmyRdddd11jjwoAAIJQ0F/Z2b17t+Lj49WhQweNHTtWRUVFkqTCwkJVVVUpOTnZs+8VV1yhyy67TAUFBec8ZmVlpdxut9cDAACYKahjJzExUbm5ucrLy9O8efO0f/9+9e/fX+Xl5XK5XLLb7YqKivJ6TmxsrFwu1zmPm52drcjISM8jISGhAd8FAAAIpKD+GGvIkCGef+7Zs6cSExPVtm1bvfnmm2revLnPx506daqysrI8y263m+ABAMBQQX1l55eioqLUpUsX7dmzR06nUydPntTRo0e99iktLT3jPT4/53A4FBER4fUAAABmuqBi59ixY9q7d6/i4uLUu3dvNW3aVPn5+Z7tu3btUlFRkZKSkgI4JQAACCZB/THW5MmTNWzYMLVt21bFxcWaNm2amjRpoltvvVWRkZFKT09XVlaWoqOjFRERoXvuuUdJSUl8EwsAAHgEdewcPHhQt956q3744Qddeuml6tevn7Zs2aJLL71UkvTCCy8oJCREo0aNUmVlpVJSUvTKK68EeGoAABBMbJZlWYEeItDcbrciIyNVVlbm9/t32k1Z5dfjAQBwoTkwc2iDHPd8f35fUPfsAAAA1BWxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxkTO3PnzlW7du3UrFkzJSYm6uOPPw70SAAAIAgYETtvvPGGsrKyNG3aNH322We66qqrlJKSokOHDgV6NAAAEGBGxM7s2bM1YcIE3XHHHerWrZvmz5+vsLAwvfbaa4EeDQAABFhooAeor5MnT6qwsFBTp071rAsJCVFycrIKCgrO+JzKykpVVlZ6lsvKyiRJbrfb7/PVVh73+zEBALiQNMTP158f17Ksc+53wcfO999/r5qaGsXGxnqtj42N1ddff33G52RnZ+vJJ588bX1CQkKDzAgAwMUsck7DHr+8vFyRkZFn3X7Bx44vpk6dqqysLM9ybW2tjhw5olatWslmswVwsuDkdruVkJCg7777ThEREYEeB+KcBBvOR3DhfASXhjwflmWpvLxc8fHx59zvgo+d1q1bq0mTJiotLfVaX1paKqfTecbnOBwOORwOr3VRUVENNaIxIiIi+B+OIMM5CS6cj+DC+QguDXU+znVF55QL/gZlu92u3r17Kz8/37OutrZW+fn5SkpKCuBkAAAgGFzwV3YkKSsrS2lpaerTp4+uvfZazZkzRxUVFbrjjjsCPRoAAAgwI2Lnlltu0eHDh/X444/L5XKpV69eysvLO+2mZfjG4XBo2rRpp330h8DhnAQXzkdw4XwEl2A4Hzbr176vBQAAcAG74O/ZAQAAOBdiBwAAGI3YAQAARiN2AACA0YgdSJLmzp2rdu3aqVmzZkpMTNTHH3981n1fffVV9e/fXy1btlTLli2VnJx8zv1Rd3U5Hz+3dOlS2Ww2jRgxomEHvAjV9ZwcPXpUGRkZiouLk8PhUJcuXbR69epGmtZ8dT0fc+bM0eWXX67mzZsrISFBkyZN0okTJxppWrNt2rRJw4YNU3x8vGw2m1asWPGrz9mwYYOuvvpqORwOderUSbm5uQ07pIWL3tKlSy273W699tpr1o4dO6wJEyZYUVFRVmlp6Rn3HzNmjDV37lxr69at1ldffWWNHz/eioyMtA4ePNjIk5uprufjlP3791u/+c1vrP79+1vDhw9vnGEvEnU9J5WVlVafPn2s1NRUa/Pmzdb+/futDRs2WNu2bWvkyc1U1/OxePFiy+FwWIsXL7b2799vvf/++1ZcXJw1adKkRp7cTKtXr7YeeeQRa/ny5ZYk66233jrn/vv27bPCwsKsrKwsa+fOndbLL79sNWnSxMrLy2uwGYkdWNdee62VkZHhWa6pqbHi4+Ot7Ozs83p+dXW1FR4ebi1cuLChRryo+HI+qqurreuvv976xz/+YaWlpRE7flbXczJv3jyrQ4cO1smTJxtrxItKXc9HRkaGddNNN3mty8rKsvr27dugc16Mzid2HnzwQevKK6/0WnfLLbdYKSkpDTYXH2Nd5E6ePKnCwkIlJyd71oWEhCg5OVkFBQXndYzjx4+rqqpK0dHRDTXmRcPX8/HUU08pJiZG6enpjTHmRcWXc/LOO+8oKSlJGRkZio2NVffu3TVjxgzV1NQ01tjG8uV8XH/99SosLPR81LVv3z6tXr1aqampjTIzvBUUFHidP0lKSUk57585vjDiNyjDd99//71qampO+23TsbGx+vrrr8/rGA899JDi4+NP+y8v6s6X87F582YtWLBA27Zta4QJLz6+nJN9+/Zp3bp1Gjt2rFavXq09e/bo7rvvVlVVlaZNm9YYYxvLl/MxZswYff/99+rXr58sy1J1dbXuvPNOPfzww40xMn7B5XKd8fy53W793//9n5o3b+731+TKDupl5syZWrp0qd566y01a9Ys0ONcdMrLyzVu3Di9+uqrat26daDHwf9XW1urmJgY/f3vf1fv3r11yy236JFHHtH8+fMDPdpFacOGDZoxY4ZeeeUVffbZZ1q+fLlWrVql6dOnB3o0NBKu7FzkWrdurSZNmqi0tNRrfWlpqZxO5zmf+9xzz2nmzJlau3atevbs2ZBjXjTqej727t2rAwcOaNiwYZ51tbW1kqTQ0FDt2rVLHTt2bNihDefLvyNxcXFq2rSpmjRp4lnXtWtXuVwunTx5Una7vUFnNpkv5+Oxxx7TuHHj9Mc//lGS1KNHD1VUVGjixIl65JFHFBLC/+9vTE6n84znLyIiokGu6khc2bno2e129e7dW/n5+Z51tbW1ys/PV1JS0lmfN2vWLE2fPl15eXnq06dPY4x6Uajr+bjiiiv0xRdfaNu2bZ7H7373Ow0YMEDbtm1TQkJCY45vJF/+Henbt6/27NnjCU9J+uabbxQXF0fo1JMv5+P48eOnBc2pELX485CNLikpyev8SdKaNWvO+TOn3hrs1mdcMJYuXWo5HA4rNzfX2rlzpzVx4kQrKirKcrlclmVZ1rhx46wpU6Z49p85c6Zlt9utf/3rX1ZJSYnnUV5eHqi3YJS6no9f4ttY/lfXc1JUVGSFh4dbmZmZ1q5du6yVK1daMTEx1tNPPx2ot2CUup6PadOmWeHh4dbrr79u7du3z/rggw+sjh07Wr///e8D9RaMUl5ebm3dutXaunWrJcmaPXu2tXXrVuvbb7+1LMuypkyZYo0bN86z/6mvnj/wwAPWV199Zc2dO5evnqNxvPzyy9Zll11m2e1269prr7W2bNni2fbb3/7WSktL8yy3bdvWknTaY9q0aY0/uKHqcj5+idhpGHU9Jx9++KGVmJhoORwOq0OHDtZf/vIXq7q6upGnNlddzkdVVZX1xBNPWB07drSaNWtmJSQkWHfffbf1448/Nv7gBlq/fv0ZfyacOgdpaWnWb3/729Oe06tXL8tut1sdOnSwcnJyGnRGm2VxDQ8AAJiLe3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABG+39CA9s9W3ZlvQAAAABJRU5ErkJggg==",
|
| 716 |
-
"text/plain": [
|
| 717 |
-
"<Figure size 640x480 with 1 Axes>"
|
| 718 |
-
]
|
| 719 |
-
},
|
| 720 |
-
"metadata": {},
|
| 721 |
-
"output_type": "display_data"
|
| 722 |
-
}
|
| 723 |
-
],
|
| 724 |
-
"source": [
|
| 725 |
-
"\n"
|
| 726 |
]
|
| 727 |
},
|
| 728 |
{
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
|
|
| 25 |
},
|
| 26 |
{
|
| 27 |
"cell_type": "code",
|
| 28 |
+
"execution_count": 4,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
"metadata": {},
|
| 30 |
+
"outputs": [
|
| 31 |
+
{
|
| 32 |
+
"ename": "",
|
| 33 |
+
"evalue": "",
|
| 34 |
+
"output_type": "error",
|
| 35 |
+
"traceback": [
|
| 36 |
+
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
|
| 37 |
+
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
|
| 38 |
+
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
|
| 39 |
+
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
| 40 |
+
]
|
| 41 |
+
}
|
| 42 |
+
],
|
| 43 |
"source": [
|
| 44 |
+
"tools_df = pd.read_parquet(\"./data/tools.parquet\")\n",
|
| 45 |
+
"trades_df = pd.read_parquet(\"./data/all_trades_profitability.parquet\")\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
"\n",
|
| 47 |
+
"tools_df['request_time'] = pd.to_datetime(tools_df['request_time'])\n",
|
| 48 |
+
"tools_df = tools_df[tools_df['request_time'].dt.year == 2024]\n",
|
|
|
|
|
|
|
| 49 |
"\n",
|
| 50 |
+
"trades_df['creation_timestamp'] = pd.to_datetime(trades_df['creation_timestamp'])\n",
|
| 51 |
+
"trades_df = trades_df[trades_df['creation_timestamp'].dt.year == 2024]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
]
|
| 53 |
},
|
| 54 |
{
|
| 55 |
"cell_type": "code",
|
| 56 |
+
"execution_count": 5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
"metadata": {},
|
| 58 |
"outputs": [
|
| 59 |
{
|
|
|
|
| 68 |
" dtype='object')"
|
| 69 |
]
|
| 70 |
},
|
| 71 |
+
"execution_count": 5,
|
| 72 |
"metadata": {},
|
| 73 |
"output_type": "execute_result"
|
| 74 |
}
|
| 75 |
],
|
| 76 |
"source": [
|
| 77 |
+
"trades_df.columns\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
]
|
| 79 |
},
|
| 80 |
{
|