Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| from datetime import datetime, timedelta | |
| from scripts.utils import DATA_DIR | |
| # Basic Week over Week Retention | |
| def calculate_wow_retention_by_type( | |
| df: pd.DataFrame, market_creator: str | |
| ) -> pd.DataFrame: | |
| filtered_df = df.loc[df["market_creator"] == market_creator] | |
| # Get unique traders per week and type | |
| weekly_traders = ( | |
| filtered_df.groupby(["month_year_week", "trader_type"])["trader_address"] | |
| .nunique() | |
| .reset_index() | |
| ) | |
| weekly_traders = weekly_traders.sort_values(["trader_type", "month_year_week"]) | |
| # Calculate retention | |
| retention = [] | |
| # Iterate through each trader type | |
| for trader_type in weekly_traders["trader_type"].unique(): | |
| type_data = weekly_traders[weekly_traders["trader_type"] == trader_type] | |
| # Calculate retention for each week within this trader type | |
| for i in range(1, len(type_data)): | |
| current_week = type_data.iloc[i]["month_year_week"] | |
| previous_week = type_data.iloc[i - 1]["month_year_week"] | |
| # Get traders in both weeks for this type | |
| current_traders = set( | |
| filtered_df[ | |
| (filtered_df["month_year_week"] == current_week) | |
| & (filtered_df["trader_type"] == trader_type) | |
| ]["trader_address"] | |
| ) | |
| previous_traders = set( | |
| filtered_df[ | |
| (filtered_df["month_year_week"] == previous_week) | |
| & (filtered_df["trader_type"] == trader_type) | |
| ]["trader_address"] | |
| ) | |
| retained = len(current_traders.intersection(previous_traders)) | |
| retention_rate = ( | |
| (retained / len(previous_traders)) * 100 | |
| if len(previous_traders) > 0 | |
| else 0 | |
| ) | |
| retention.append( | |
| { | |
| "trader_type": trader_type, | |
| "week": current_week, | |
| "retained_traders": retained, | |
| "previous_traders": len(previous_traders), | |
| "retention_rate": round(retention_rate, 2), | |
| } | |
| ) | |
| return pd.DataFrame(retention) | |
| # Cohort Retention | |
| def calculate_cohort_retention( | |
| df: pd.DataFrame, market_creator: str, trader_type: str, max_weeks=12 | |
| ) -> pd.DataFrame: | |
| df_filtered = df.loc[ | |
| (df["market_creator"] == market_creator) & (df["trader_type"] == trader_type) | |
| ] | |
| # Get first week for each trader | |
| first_trades = ( | |
| df_filtered.groupby("trader_address") | |
| .agg({"creation_timestamp": "min", "month_year_week": "first"}) | |
| .reset_index() | |
| ) | |
| first_trades.columns = ["trader_address", "first_trade", "cohort_week"] | |
| # Get ordered list of unique weeks - converting to datetime for proper sorting | |
| all_weeks = df_filtered["month_year_week"].unique() | |
| weeks_datetime = pd.to_datetime(all_weeks) | |
| sorted_weeks_idx = weeks_datetime.argsort() | |
| all_weeks = all_weeks[sorted_weeks_idx] | |
| # Create mapping from week string to numeric index | |
| week_to_number = {week: idx for idx, week in enumerate(all_weeks)} | |
| # Merge back to get all activities | |
| cohort_data = pd.merge( | |
| df_filtered, | |
| first_trades[["trader_address", "cohort_week"]], | |
| on="trader_address", | |
| ) | |
| # Calculate week number since first activity | |
| cohort_data["cohort_number"] = cohort_data["cohort_week"].map(week_to_number) | |
| cohort_data["activity_number"] = cohort_data["month_year_week"].map(week_to_number) | |
| cohort_data["week_number"] = ( | |
| cohort_data["activity_number"] - cohort_data["cohort_number"] | |
| ) | |
| # Calculate retention by cohort | |
| cohort_sizes = cohort_data.groupby("cohort_week")["trader_address"].nunique() | |
| retention_matrix = cohort_data.groupby(["cohort_week", "week_number"])[ | |
| "trader_address" | |
| ].nunique() | |
| retention_matrix = retention_matrix.unstack(fill_value=0) | |
| # Convert to percentages | |
| retention_matrix = retention_matrix.div(cohort_sizes, axis=0) * 100 | |
| # Sort index (cohort_week) chronologically | |
| retention_matrix.index = pd.to_datetime(retention_matrix.index) | |
| retention_matrix = retention_matrix.sort_index() | |
| # Limit to max_weeks if specified | |
| if max_weeks is not None and max_weeks < retention_matrix.shape[1]: | |
| retention_matrix = retention_matrix.iloc[:, :max_weeks] | |
| return retention_matrix.round(2) | |
| def merge_retention_dataset( | |
| traders_df: pd.DataFrame, unknown_df: pd.DataFrame | |
| ) -> pd.DataFrame: | |
| traders_df["trader_type"] = traders_df["staking"].apply( | |
| lambda x: "non_Olas" if x == "non_Olas" else "Olas" | |
| ) | |
| unknown_df["trader_type"] = "unclassified" | |
| all_traders = pd.concat([traders_df, unknown_df], ignore_index=True) | |
| all_traders["creation_timestamp"] = pd.to_datetime( | |
| all_traders["creation_timestamp"] | |
| ) | |
| all_traders = all_traders.sort_values(by="creation_timestamp", ascending=True) | |
| all_traders["month_year_week"] = ( | |
| all_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d-%Y") | |
| ) | |
| return all_traders | |
| def prepare_retention_dataset( | |
| retention_df: pd.DataFrame, unknown_df: pd.DataFrame | |
| ) -> pd.DataFrame: | |
| retention_df["trader_type"] = retention_df["staking"].apply( | |
| lambda x: "non_Olas" if x == "non_Olas" else "Olas" | |
| ) | |
| retention_df.rename(columns={"request_time": "creation_timestamp"}, inplace=True) | |
| retention_df = retention_df[ | |
| ["trader_type", "market_creator", "trader_address", "creation_timestamp"] | |
| ] | |
| unknown_df["trader_type"] = "unclassified" | |
| unknown_df = unknown_df[ | |
| ["trader_type", "market_creator", "trader_address", "creation_timestamp"] | |
| ] | |
| all_traders = pd.concat([retention_df, unknown_df], ignore_index=True) | |
| all_traders["creation_timestamp"] = pd.to_datetime( | |
| all_traders["creation_timestamp"] | |
| ) | |
| all_traders = all_traders.sort_values(by="creation_timestamp", ascending=True) | |
| all_traders["month_year_week"] = ( | |
| all_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d-%Y") | |
| ) | |
| return all_traders | |
| if __name__ == "__main__": | |
| # read all datasets | |
| traders_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet") | |
| unknown_df = pd.read_parquet(DATA_DIR / "unknown_traders.parquet") | |
| all_traders = prepare_retention_dataset(traders_df, unknown_df) | |
| # Usage example: | |
| wow_retention = calculate_wow_retention_by_type(all_traders) | |
| cohort_retention = calculate_cohort_retention(all_traders) | |