Spaces:
Runtime error
Runtime error
cyberosa
commited on
Commit
Β·
3035b84
1
Parent(s):
5b74576
new labels for traders
Browse files- app.py +82 -40
- data/daily_info.parquet +2 -2
- data/unknown_daily_traders.parquet +3 -0
- data/unknown_traders.parquet +3 -0
- scripts/metrics.py +4 -4
- tabs/market_plots.py +22 -22
- tabs/trader_plots.py +8 -10
app.py
CHANGED
|
@@ -77,14 +77,21 @@ def get_all_data():
|
|
| 77 |
FROM read_parquet('./data/daily_info.parquet')
|
| 78 |
"""
|
| 79 |
df3 = con.execute(query3).fetchdf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
con.close()
|
| 81 |
|
| 82 |
-
return df1, df2, df3
|
| 83 |
|
| 84 |
|
| 85 |
def prepare_data():
|
| 86 |
|
| 87 |
-
all_trades, closed_markets, daily_info = get_all_data()
|
| 88 |
|
| 89 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
| 90 |
|
|
@@ -99,6 +106,7 @@ def prepare_data():
|
|
| 99 |
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
|
| 100 |
)
|
| 101 |
daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
|
|
|
|
| 102 |
# adding the trader family column
|
| 103 |
traders_data["trader_family"] = traders_data.apply(
|
| 104 |
lambda x: get_traders_family(x), axis=1
|
|
@@ -106,29 +114,28 @@ def prepare_data():
|
|
| 106 |
print(traders_data.head())
|
| 107 |
|
| 108 |
traders_data = traders_data.sort_values(by="creation_timestamp", ascending=True)
|
| 109 |
-
|
|
|
|
|
|
|
| 110 |
traders_data["month_year_week"] = (
|
| 111 |
traders_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
| 112 |
)
|
| 113 |
-
|
|
|
|
|
|
|
| 114 |
closed_markets["month_year_week"] = (
|
| 115 |
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
|
| 116 |
)
|
| 117 |
-
return traders_data, closed_markets, daily_info
|
| 118 |
|
| 119 |
|
| 120 |
-
traders_data, closed_markets, daily_info = prepare_data()
|
| 121 |
|
| 122 |
demo = gr.Blocks()
|
| 123 |
# get weekly metrics by market creator: qs, pearl or all.
|
| 124 |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
| 125 |
traders_data
|
| 126 |
)
|
| 127 |
-
print(
|
| 128 |
-
weekly_metrics_by_market_creator.loc[
|
| 129 |
-
weekly_metrics_by_market_creator["market_creator"] == "all"
|
| 130 |
-
].roi_diff_perc.describe()
|
| 131 |
-
)
|
| 132 |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
| 133 |
traders_data, trader_filter="non_Olas"
|
| 134 |
)
|
|
@@ -136,6 +143,10 @@ weekly_non_olas_metrics_by_market_creator = compute_weekly_metrics_by_market_cre
|
|
| 136 |
traders_data, trader_filter="non_Olas"
|
| 137 |
)
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
weekly_winning_metrics = compute_winning_metrics_by_trader(traders_data=traders_data)
|
| 140 |
weekly_non_olas_winning_metrics = compute_winning_metrics_by_trader(
|
| 141 |
traders_data=traders_data, trader_filter="non_Olas"
|
|
@@ -191,7 +202,7 @@ with demo:
|
|
| 191 |
|
| 192 |
with gr.Row():
|
| 193 |
with gr.Column(scale=3):
|
| 194 |
-
|
| 195 |
metric_name=default_trader_metric,
|
| 196 |
traders_df=weekly_metrics_by_market_creator,
|
| 197 |
)
|
|
@@ -207,14 +218,14 @@ with demo:
|
|
| 207 |
trader_o_details_selector.change(
|
| 208 |
update_a_trader_details,
|
| 209 |
inputs=trader_o_details_selector,
|
| 210 |
-
outputs=
|
| 211 |
)
|
| 212 |
|
| 213 |
# Non-Olas traders graph
|
| 214 |
with gr.Row():
|
| 215 |
gr.Markdown("# Weekly metrics of Non-Olas traders")
|
| 216 |
with gr.Row():
|
| 217 |
-
|
| 218 |
label="Select a weekly trader metric",
|
| 219 |
choices=trader_metric_choices,
|
| 220 |
value=default_trader_metric,
|
|
@@ -222,23 +233,53 @@ with demo:
|
|
| 222 |
|
| 223 |
with gr.Row():
|
| 224 |
with gr.Column(scale=3):
|
| 225 |
-
|
| 226 |
metric_name=default_trader_metric,
|
| 227 |
traders_df=weekly_non_olas_metrics_by_market_creator,
|
| 228 |
)
|
| 229 |
with gr.Column(scale=1):
|
| 230 |
trade_details_text = get_metrics_text()
|
| 231 |
|
| 232 |
-
def
|
| 233 |
return plot_trader_metrics_by_market_creator(
|
| 234 |
metric_name=trader_detail,
|
| 235 |
traders_df=weekly_non_olas_metrics_by_market_creator,
|
| 236 |
)
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
inputs=
|
| 241 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
)
|
| 243 |
with gr.TabItem("π
Daily metrics"):
|
| 244 |
current_week_trades = get_current_week_data(trades_df=traders_data)
|
|
@@ -283,11 +324,11 @@ with demo:
|
|
| 283 |
inputs=[trade_live_details_selector, trade_live_details_plot],
|
| 284 |
outputs=[trade_live_details_plot],
|
| 285 |
)
|
| 286 |
-
|
| 287 |
with gr.Row():
|
| 288 |
gr.Markdown("# Daily live metrics for π Olas traders")
|
| 289 |
with gr.Row():
|
| 290 |
-
|
| 291 |
label="Select a daily live metric",
|
| 292 |
choices=trader_daily_metric_choices,
|
| 293 |
value=default_daily_metric,
|
|
@@ -295,7 +336,7 @@ with demo:
|
|
| 295 |
|
| 296 |
with gr.Row():
|
| 297 |
with gr.Column(scale=3):
|
| 298 |
-
|
| 299 |
metric_name=default_daily_metric,
|
| 300 |
trades_df=live_metrics_by_market_creator,
|
| 301 |
trader_filter="Olas",
|
|
@@ -304,22 +345,22 @@ with demo:
|
|
| 304 |
trade_details_text = get_metrics_text(daily=True)
|
| 305 |
|
| 306 |
def update_a_trader_live_details(trade_detail, a_trader_live_details_plot):
|
| 307 |
-
|
| 308 |
metric_name=trade_detail,
|
| 309 |
trades_df=live_metrics_by_market_creator,
|
| 310 |
trader_filter="Olas",
|
| 311 |
)
|
| 312 |
-
return
|
| 313 |
|
| 314 |
-
|
| 315 |
update_a_trader_live_details,
|
| 316 |
-
inputs=[
|
| 317 |
-
outputs=[
|
| 318 |
)
|
| 319 |
with gr.Row():
|
| 320 |
gr.Markdown("# Daily live metrics for Non-Olas traders")
|
| 321 |
with gr.Row():
|
| 322 |
-
|
| 323 |
label="Select a daily live metric",
|
| 324 |
choices=trader_daily_metric_choices,
|
| 325 |
value=default_daily_metric,
|
|
@@ -327,7 +368,7 @@ with demo:
|
|
| 327 |
|
| 328 |
with gr.Row():
|
| 329 |
with gr.Column(scale=3):
|
| 330 |
-
|
| 331 |
metric_name=default_daily_metric,
|
| 332 |
trades_df=live_metrics_by_market_creator,
|
| 333 |
trader_filter="non_Olas",
|
|
@@ -336,19 +377,19 @@ with demo:
|
|
| 336 |
trade_details_text = get_metrics_text(daily=True)
|
| 337 |
|
| 338 |
def update_na_trader_live_details(
|
| 339 |
-
trade_detail,
|
| 340 |
):
|
| 341 |
-
|
| 342 |
metric_name=trade_detail,
|
| 343 |
trades_df=live_metrics_by_market_creator,
|
| 344 |
trader_filter="non_Olas",
|
| 345 |
)
|
| 346 |
-
return
|
| 347 |
|
| 348 |
-
|
| 349 |
update_na_trader_live_details,
|
| 350 |
-
inputs=[
|
| 351 |
-
outputs=[
|
| 352 |
)
|
| 353 |
|
| 354 |
with gr.TabItem("π Markets KullbackβLeibler divergence"):
|
|
@@ -381,7 +422,7 @@ with demo:
|
|
| 381 |
"# Weekly total bet amount per trader type for Pearl markets"
|
| 382 |
)
|
| 383 |
with gr.Row():
|
| 384 |
-
|
| 385 |
traders_data, market_filter="pearl"
|
| 386 |
)
|
| 387 |
|
|
@@ -390,9 +431,10 @@ with demo:
|
|
| 390 |
"# Weekly total bet amount per trader type for Quickstart markets"
|
| 391 |
)
|
| 392 |
with gr.Row():
|
| 393 |
-
|
| 394 |
traders_data, market_filter="quickstart"
|
| 395 |
)
|
|
|
|
| 396 |
with gr.TabItem("π° Money invested per market"):
|
| 397 |
with gr.Row():
|
| 398 |
gr.Markdown("# Weekly bet amounts per market for all traders")
|
|
@@ -402,14 +444,14 @@ with demo:
|
|
| 402 |
with gr.Row():
|
| 403 |
gr.Markdown("# Weekly bet amounts per market for π Olas traders")
|
| 404 |
with gr.Row():
|
| 405 |
-
|
| 406 |
traders_data, trader_filter="Olas"
|
| 407 |
)
|
| 408 |
|
| 409 |
with gr.Row():
|
| 410 |
gr.Markdown("# Weekly bet amounts per market for Non-Olas traders")
|
| 411 |
with gr.Row():
|
| 412 |
-
|
| 413 |
traders_data, trader_filter="non_Olas"
|
| 414 |
)
|
| 415 |
|
|
|
|
| 77 |
FROM read_parquet('./data/daily_info.parquet')
|
| 78 |
"""
|
| 79 |
df3 = con.execute(query3).fetchdf()
|
| 80 |
+
|
| 81 |
+
# Query to fetch daily live data of unknown daily traders
|
| 82 |
+
query4 = f"""
|
| 83 |
+
SELECT *
|
| 84 |
+
FROM read_parquet('./data/unknown_traders.parquet')
|
| 85 |
+
"""
|
| 86 |
+
df4 = con.execute(query4).fetchdf()
|
| 87 |
con.close()
|
| 88 |
|
| 89 |
+
return df1, df2, df3, df4
|
| 90 |
|
| 91 |
|
| 92 |
def prepare_data():
|
| 93 |
|
| 94 |
+
all_trades, closed_markets, daily_info, unknown_traders = get_all_data()
|
| 95 |
|
| 96 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
| 97 |
|
|
|
|
| 106 |
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
|
| 107 |
)
|
| 108 |
daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
|
| 109 |
+
unknown_traders["creation_date"] = unknown_traders["creation_timestamp"].dt.date
|
| 110 |
# adding the trader family column
|
| 111 |
traders_data["trader_family"] = traders_data.apply(
|
| 112 |
lambda x: get_traders_family(x), axis=1
|
|
|
|
| 114 |
print(traders_data.head())
|
| 115 |
|
| 116 |
traders_data = traders_data.sort_values(by="creation_timestamp", ascending=True)
|
| 117 |
+
unknown_traders = unknown_traders.sort_values(
|
| 118 |
+
by="creation_timestamp", ascending=True
|
| 119 |
+
)
|
| 120 |
traders_data["month_year_week"] = (
|
| 121 |
traders_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
| 122 |
)
|
| 123 |
+
unknown_traders["month_year_week"] = (
|
| 124 |
+
unknown_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
| 125 |
+
)
|
| 126 |
closed_markets["month_year_week"] = (
|
| 127 |
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
|
| 128 |
)
|
| 129 |
+
return traders_data, closed_markets, daily_info, unknown_traders
|
| 130 |
|
| 131 |
|
| 132 |
+
traders_data, closed_markets, daily_info, unknown_traders = prepare_data()
|
| 133 |
|
| 134 |
demo = gr.Blocks()
|
| 135 |
# get weekly metrics by market creator: qs, pearl or all.
|
| 136 |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
| 137 |
traders_data
|
| 138 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
| 140 |
traders_data, trader_filter="non_Olas"
|
| 141 |
)
|
|
|
|
| 143 |
traders_data, trader_filter="non_Olas"
|
| 144 |
)
|
| 145 |
|
| 146 |
+
weekly_unknown_trader_metrics_by_market_creator = (
|
| 147 |
+
compute_weekly_metrics_by_market_creator(unknown_traders)
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
weekly_winning_metrics = compute_winning_metrics_by_trader(traders_data=traders_data)
|
| 151 |
weekly_non_olas_winning_metrics = compute_winning_metrics_by_trader(
|
| 152 |
traders_data=traders_data, trader_filter="non_Olas"
|
|
|
|
| 202 |
|
| 203 |
with gr.Row():
|
| 204 |
with gr.Column(scale=3):
|
| 205 |
+
o_trader_markets_plot = plot_trader_metrics_by_market_creator(
|
| 206 |
metric_name=default_trader_metric,
|
| 207 |
traders_df=weekly_metrics_by_market_creator,
|
| 208 |
)
|
|
|
|
| 218 |
trader_o_details_selector.change(
|
| 219 |
update_a_trader_details,
|
| 220 |
inputs=trader_o_details_selector,
|
| 221 |
+
outputs=o_trader_markets_plot,
|
| 222 |
)
|
| 223 |
|
| 224 |
# Non-Olas traders graph
|
| 225 |
with gr.Row():
|
| 226 |
gr.Markdown("# Weekly metrics of Non-Olas traders")
|
| 227 |
with gr.Row():
|
| 228 |
+
trader_no_details_selector = gr.Dropdown(
|
| 229 |
label="Select a weekly trader metric",
|
| 230 |
choices=trader_metric_choices,
|
| 231 |
value=default_trader_metric,
|
|
|
|
| 233 |
|
| 234 |
with gr.Row():
|
| 235 |
with gr.Column(scale=3):
|
| 236 |
+
trader_no_markets_plot = plot_trader_metrics_by_market_creator(
|
| 237 |
metric_name=default_trader_metric,
|
| 238 |
traders_df=weekly_non_olas_metrics_by_market_creator,
|
| 239 |
)
|
| 240 |
with gr.Column(scale=1):
|
| 241 |
trade_details_text = get_metrics_text()
|
| 242 |
|
| 243 |
+
def update_no_trader_details(trader_detail):
|
| 244 |
return plot_trader_metrics_by_market_creator(
|
| 245 |
metric_name=trader_detail,
|
| 246 |
traders_df=weekly_non_olas_metrics_by_market_creator,
|
| 247 |
)
|
| 248 |
|
| 249 |
+
trader_no_details_selector.change(
|
| 250 |
+
update_no_trader_details,
|
| 251 |
+
inputs=trader_no_details_selector,
|
| 252 |
+
outputs=trader_no_markets_plot,
|
| 253 |
+
)
|
| 254 |
+
# Unknown traders graph
|
| 255 |
+
with gr.Row():
|
| 256 |
+
gr.Markdown("# Weekly metrics of Unknown traders")
|
| 257 |
+
with gr.Row():
|
| 258 |
+
trader_u_details_selector = gr.Dropdown(
|
| 259 |
+
label="Select a weekly trader metric",
|
| 260 |
+
choices=trader_metric_choices,
|
| 261 |
+
value=default_trader_metric,
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
with gr.Row():
|
| 265 |
+
with gr.Column(scale=3):
|
| 266 |
+
trader_u_markets_plot = plot_trader_metrics_by_market_creator(
|
| 267 |
+
metric_name=default_trader_metric,
|
| 268 |
+
traders_df=weekly_unknown_trader_metrics_by_market_creator,
|
| 269 |
+
)
|
| 270 |
+
with gr.Column(scale=1):
|
| 271 |
+
trade_details_text = get_metrics_text()
|
| 272 |
+
|
| 273 |
+
def update_u_trader_details(trader_detail):
|
| 274 |
+
return plot_trader_metrics_by_market_creator(
|
| 275 |
+
metric_name=trader_detail,
|
| 276 |
+
traders_df=weekly_unknown_trader_metrics_by_market_creator,
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
trader_u_details_selector.change(
|
| 280 |
+
update_u_trader_details,
|
| 281 |
+
inputs=trader_u_details_selector,
|
| 282 |
+
outputs=trader_u_markets_plot,
|
| 283 |
)
|
| 284 |
with gr.TabItem("π
Daily metrics"):
|
| 285 |
current_week_trades = get_current_week_data(trades_df=traders_data)
|
|
|
|
| 324 |
inputs=[trade_live_details_selector, trade_live_details_plot],
|
| 325 |
outputs=[trade_live_details_plot],
|
| 326 |
)
|
| 327 |
+
# Olas traders
|
| 328 |
with gr.Row():
|
| 329 |
gr.Markdown("# Daily live metrics for π Olas traders")
|
| 330 |
with gr.Row():
|
| 331 |
+
o_trader_live_details_selector = gr.Dropdown(
|
| 332 |
label="Select a daily live metric",
|
| 333 |
choices=trader_daily_metric_choices,
|
| 334 |
value=default_daily_metric,
|
|
|
|
| 336 |
|
| 337 |
with gr.Row():
|
| 338 |
with gr.Column(scale=3):
|
| 339 |
+
o_trader_live_details_plot = plot_daily_metrics(
|
| 340 |
metric_name=default_daily_metric,
|
| 341 |
trades_df=live_metrics_by_market_creator,
|
| 342 |
trader_filter="Olas",
|
|
|
|
| 345 |
trade_details_text = get_metrics_text(daily=True)
|
| 346 |
|
| 347 |
def update_a_trader_live_details(trade_detail, a_trader_live_details_plot):
|
| 348 |
+
o_trader_plot = plot_daily_metrics(
|
| 349 |
metric_name=trade_detail,
|
| 350 |
trades_df=live_metrics_by_market_creator,
|
| 351 |
trader_filter="Olas",
|
| 352 |
)
|
| 353 |
+
return o_trader_plot
|
| 354 |
|
| 355 |
+
o_trader_live_details_selector.change(
|
| 356 |
update_a_trader_live_details,
|
| 357 |
+
inputs=[o_trader_live_details_selector, o_trader_live_details_plot],
|
| 358 |
+
outputs=[o_trader_live_details_plot],
|
| 359 |
)
|
| 360 |
with gr.Row():
|
| 361 |
gr.Markdown("# Daily live metrics for Non-Olas traders")
|
| 362 |
with gr.Row():
|
| 363 |
+
no_trader_live_details_selector = gr.Dropdown(
|
| 364 |
label="Select a daily live metric",
|
| 365 |
choices=trader_daily_metric_choices,
|
| 366 |
value=default_daily_metric,
|
|
|
|
| 368 |
|
| 369 |
with gr.Row():
|
| 370 |
with gr.Column(scale=3):
|
| 371 |
+
no_trader_live_details_plot = plot_daily_metrics(
|
| 372 |
metric_name=default_daily_metric,
|
| 373 |
trades_df=live_metrics_by_market_creator,
|
| 374 |
trader_filter="non_Olas",
|
|
|
|
| 377 |
trade_details_text = get_metrics_text(daily=True)
|
| 378 |
|
| 379 |
def update_na_trader_live_details(
|
| 380 |
+
trade_detail, no_trader_live_details_plot
|
| 381 |
):
|
| 382 |
+
no_trader_plot = plot_daily_metrics(
|
| 383 |
metric_name=trade_detail,
|
| 384 |
trades_df=live_metrics_by_market_creator,
|
| 385 |
trader_filter="non_Olas",
|
| 386 |
)
|
| 387 |
+
return no_trader_plot
|
| 388 |
|
| 389 |
+
no_trader_live_details_selector.change(
|
| 390 |
update_na_trader_live_details,
|
| 391 |
+
inputs=[no_trader_live_details_selector, no_trader_live_details_plot],
|
| 392 |
+
outputs=[no_trader_live_details_plot],
|
| 393 |
)
|
| 394 |
|
| 395 |
with gr.TabItem("π Markets KullbackβLeibler divergence"):
|
|
|
|
| 422 |
"# Weekly total bet amount per trader type for Pearl markets"
|
| 423 |
)
|
| 424 |
with gr.Row():
|
| 425 |
+
o_trader_total_bet_amount = plot_total_bet_amount(
|
| 426 |
traders_data, market_filter="pearl"
|
| 427 |
)
|
| 428 |
|
|
|
|
| 431 |
"# Weekly total bet amount per trader type for Quickstart markets"
|
| 432 |
)
|
| 433 |
with gr.Row():
|
| 434 |
+
no_trader_total_bet_amount = plot_total_bet_amount(
|
| 435 |
traders_data, market_filter="quickstart"
|
| 436 |
)
|
| 437 |
+
|
| 438 |
with gr.TabItem("π° Money invested per market"):
|
| 439 |
with gr.Row():
|
| 440 |
gr.Markdown("# Weekly bet amounts per market for all traders")
|
|
|
|
| 444 |
with gr.Row():
|
| 445 |
gr.Markdown("# Weekly bet amounts per market for π Olas traders")
|
| 446 |
with gr.Row():
|
| 447 |
+
o_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
|
| 448 |
traders_data, trader_filter="Olas"
|
| 449 |
)
|
| 450 |
|
| 451 |
with gr.Row():
|
| 452 |
gr.Markdown("# Weekly bet amounts per market for Non-Olas traders")
|
| 453 |
with gr.Row():
|
| 454 |
+
no_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
|
| 455 |
traders_data, trader_filter="non_Olas"
|
| 456 |
)
|
| 457 |
|
data/daily_info.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1786521d10be3b3c7ccff825d4f5d4e3c8ec7616e351f89bc56ae846f421f6bc
|
| 3 |
+
size 884405
|
data/unknown_daily_traders.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f75e649183ccbf7179b4a79315e8957971f13a4e03870852e5850da65fd8821
|
| 3 |
+
size 48908
|
data/unknown_traders.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ab41a7a35d8bf5c588b95849ec650e048578ddcbb18bc62df0e7a3c96902ea5
|
| 3 |
+
size 368142
|
scripts/metrics.py
CHANGED
|
@@ -66,7 +66,7 @@ def compute_trader_metrics_by_market_creator(
|
|
| 66 |
) -> dict:
|
| 67 |
"""This function computes for a specific time window (week or day) the different metrics:
|
| 68 |
roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades.
|
| 69 |
-
The global roi of the trader
|
| 70 |
achieved per market and dividing both.
|
| 71 |
It is possible to filter by market creator: quickstart, pearl, all"""
|
| 72 |
assert "market_creator" in traders_data.columns
|
|
@@ -182,7 +182,7 @@ def compute_weekly_metrics_by_market_creator(
|
|
| 182 |
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
|
| 183 |
if trader_filter is None:
|
| 184 |
contents.append(merge_trader_weekly_metrics(trader, weekly_data, week))
|
| 185 |
-
elif trader_filter == "
|
| 186 |
filtered_data = weekly_data.loc[weekly_data["staking"] != "non_Olas"]
|
| 187 |
contents.append(
|
| 188 |
merge_trader_weekly_metrics(trader, filtered_data, week)
|
|
@@ -217,7 +217,7 @@ def compute_daily_metrics_by_market_creator(
|
|
| 217 |
contents.append(
|
| 218 |
merge_trader_daily_metrics(trader, daily_data, day, live_metrics)
|
| 219 |
)
|
| 220 |
-
elif trader_filter == "
|
| 221 |
filtered_data = daily_data.loc[daily_data["staking"] != "non_Olas"]
|
| 222 |
contents.append(
|
| 223 |
merge_trader_daily_metrics(trader, filtered_data, day, live_metrics)
|
|
@@ -243,7 +243,7 @@ def compute_winning_metrics_by_trader(
|
|
| 243 |
final_traders = pd.concat([market_all, traders_data], ignore_index=True)
|
| 244 |
final_traders = final_traders.sort_values(by="creation_timestamp", ascending=True)
|
| 245 |
|
| 246 |
-
if trader_filter == "
|
| 247 |
final_traders = final_traders.loc[final_traders["staking"] != "non_Olas"]
|
| 248 |
else: # non_Olas traders
|
| 249 |
final_traders = final_traders.loc[final_traders["staking"] == "non_Olas"]
|
|
|
|
| 66 |
) -> dict:
|
| 67 |
"""This function computes for a specific time window (week or day) the different metrics:
|
| 68 |
roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades.
|
| 69 |
+
The global roi of the trader by computing the individual net profit and the individual costs values
|
| 70 |
achieved per market and dividing both.
|
| 71 |
It is possible to filter by market creator: quickstart, pearl, all"""
|
| 72 |
assert "market_creator" in traders_data.columns
|
|
|
|
| 182 |
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
|
| 183 |
if trader_filter is None:
|
| 184 |
contents.append(merge_trader_weekly_metrics(trader, weekly_data, week))
|
| 185 |
+
elif trader_filter == "Olas":
|
| 186 |
filtered_data = weekly_data.loc[weekly_data["staking"] != "non_Olas"]
|
| 187 |
contents.append(
|
| 188 |
merge_trader_weekly_metrics(trader, filtered_data, week)
|
|
|
|
| 217 |
contents.append(
|
| 218 |
merge_trader_daily_metrics(trader, daily_data, day, live_metrics)
|
| 219 |
)
|
| 220 |
+
elif trader_filter == "Olas":
|
| 221 |
filtered_data = daily_data.loc[daily_data["staking"] != "non_Olas"]
|
| 222 |
contents.append(
|
| 223 |
merge_trader_daily_metrics(trader, filtered_data, day, live_metrics)
|
|
|
|
| 243 |
final_traders = pd.concat([market_all, traders_data], ignore_index=True)
|
| 244 |
final_traders = final_traders.sort_values(by="creation_timestamp", ascending=True)
|
| 245 |
|
| 246 |
+
if trader_filter == "Olas":
|
| 247 |
final_traders = final_traders.loc[final_traders["staking"] != "non_Olas"]
|
| 248 |
else: # non_Olas traders
|
| 249 |
final_traders = final_traders.loc[final_traders["staking"] == "non_Olas"]
|
tabs/market_plots.py
CHANGED
|
@@ -111,17 +111,17 @@ def plot_total_bet_amount_per_trader_per_market(
|
|
| 111 |
|
| 112 |
# Create binary staking category
|
| 113 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
| 114 |
-
lambda x: "
|
| 115 |
)
|
| 116 |
final_traders["trader_market"] = final_traders.apply(
|
| 117 |
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
| 118 |
)
|
| 119 |
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
|
| 120 |
-
if trader_filter == "
|
| 121 |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
| 122 |
-
final_traders = final_traders.loc[final_traders["trader_type"] == "
|
| 123 |
-
elif trader_filter == "
|
| 124 |
-
final_traders = final_traders.loc[final_traders["trader_type"] != "
|
| 125 |
|
| 126 |
total_bet_amount = (
|
| 127 |
final_traders.groupby(
|
|
@@ -149,12 +149,12 @@ def plot_total_bet_amount_per_trader_per_market(
|
|
| 149 |
category_orders={
|
| 150 |
"market_creator": ["pearl", "quickstart", "all"],
|
| 151 |
"trader_market": [
|
| 152 |
-
("
|
| 153 |
-
("
|
| 154 |
-
("
|
| 155 |
-
("
|
| 156 |
-
("
|
| 157 |
-
("
|
| 158 |
],
|
| 159 |
},
|
| 160 |
# facet_col="trader_type",
|
|
@@ -192,17 +192,17 @@ def plot_nr_trades_per_trader_per_market(
|
|
| 192 |
|
| 193 |
# Create binary staking category
|
| 194 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
| 195 |
-
lambda x: "
|
| 196 |
)
|
| 197 |
final_traders["trader_market"] = final_traders.apply(
|
| 198 |
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
| 199 |
)
|
| 200 |
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
|
| 201 |
-
if trader_filter == "
|
| 202 |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
| 203 |
-
final_traders = final_traders.loc[final_traders["trader_type"] == "
|
| 204 |
-
elif trader_filter == "
|
| 205 |
-
final_traders = final_traders.loc[final_traders["trader_type"] != "
|
| 206 |
|
| 207 |
fig = px.box(
|
| 208 |
final_traders,
|
|
@@ -213,12 +213,12 @@ def plot_nr_trades_per_trader_per_market(
|
|
| 213 |
category_orders={
|
| 214 |
"market_creator": ["pearl", "quickstart", "all"],
|
| 215 |
"trader_market": [
|
| 216 |
-
("
|
| 217 |
-
("
|
| 218 |
-
("
|
| 219 |
-
("
|
| 220 |
-
("
|
| 221 |
-
("
|
| 222 |
],
|
| 223 |
},
|
| 224 |
# facet_col="trader_type",
|
|
|
|
| 111 |
|
| 112 |
# Create binary staking category
|
| 113 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
| 114 |
+
lambda x: "non_Olas" if x == "non_Olas" else "Olas"
|
| 115 |
)
|
| 116 |
final_traders["trader_market"] = final_traders.apply(
|
| 117 |
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
| 118 |
)
|
| 119 |
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
|
| 120 |
+
if trader_filter == "Olas":
|
| 121 |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
| 122 |
+
final_traders = final_traders.loc[final_traders["trader_type"] == "Olas"]
|
| 123 |
+
elif trader_filter == "non_Olas":
|
| 124 |
+
final_traders = final_traders.loc[final_traders["trader_type"] != "Olas"]
|
| 125 |
|
| 126 |
total_bet_amount = (
|
| 127 |
final_traders.groupby(
|
|
|
|
| 149 |
category_orders={
|
| 150 |
"market_creator": ["pearl", "quickstart", "all"],
|
| 151 |
"trader_market": [
|
| 152 |
+
("Olas", "pearl"),
|
| 153 |
+
("non_Olas", "pearl"),
|
| 154 |
+
("Olas", "quickstart"),
|
| 155 |
+
("non_Olas", "quickstart"),
|
| 156 |
+
("Olas", "all"),
|
| 157 |
+
("non_Olas", "all"),
|
| 158 |
],
|
| 159 |
},
|
| 160 |
# facet_col="trader_type",
|
|
|
|
| 192 |
|
| 193 |
# Create binary staking category
|
| 194 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
| 195 |
+
lambda x: "non_Olas" if x == "non_Olas" else "Olas"
|
| 196 |
)
|
| 197 |
final_traders["trader_market"] = final_traders.apply(
|
| 198 |
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
| 199 |
)
|
| 200 |
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
|
| 201 |
+
if trader_filter == "Olas":
|
| 202 |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
| 203 |
+
final_traders = final_traders.loc[final_traders["trader_type"] == "Olas"]
|
| 204 |
+
elif trader_filter == "non_Olas":
|
| 205 |
+
final_traders = final_traders.loc[final_traders["trader_type"] != "Olas"]
|
| 206 |
|
| 207 |
fig = px.box(
|
| 208 |
final_traders,
|
|
|
|
| 213 |
category_orders={
|
| 214 |
"market_creator": ["pearl", "quickstart", "all"],
|
| 215 |
"trader_market": [
|
| 216 |
+
("Olas", "pearl"),
|
| 217 |
+
("non_Olas", "pearl"),
|
| 218 |
+
("Olas", "quickstart"),
|
| 219 |
+
("non_Olas", "quickstart"),
|
| 220 |
+
("Olas", "all"),
|
| 221 |
+
("non_Olas", "all"),
|
| 222 |
],
|
| 223 |
},
|
| 224 |
# facet_col="trader_type",
|
tabs/trader_plots.py
CHANGED
|
@@ -199,7 +199,7 @@ def plot_total_bet_amount(
|
|
| 199 |
final_traders = final_traders.sort_values(by="creation_date", ascending=True)
|
| 200 |
# Create binary staking category
|
| 201 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
| 202 |
-
lambda x: "
|
| 203 |
)
|
| 204 |
|
| 205 |
total_bet_amount = (
|
|
@@ -245,12 +245,12 @@ def plot_total_bet_amount(
|
|
| 245 |
category_orders={
|
| 246 |
"market_creator": ["pearl", "quickstart", "all"],
|
| 247 |
"trader_market": [
|
| 248 |
-
("
|
| 249 |
-
("
|
| 250 |
-
("
|
| 251 |
-
("
|
| 252 |
-
("
|
| 253 |
-
("
|
| 254 |
],
|
| 255 |
},
|
| 256 |
barmode="group",
|
|
@@ -261,9 +261,7 @@ def plot_total_bet_amount(
|
|
| 261 |
yaxis_title="Weekly total bet amount per trader type",
|
| 262 |
legend=dict(yanchor="top", y=0.5),
|
| 263 |
)
|
| 264 |
-
|
| 265 |
-
# if axis.startswith("xaxis"):
|
| 266 |
-
# fig.layout[axis].update(title="Week")
|
| 267 |
fig.update_xaxes(tickformat="%b %d")
|
| 268 |
# Update layout to force x-axis category order (hotfix for a sorting issue)
|
| 269 |
fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})
|
|
|
|
| 199 |
final_traders = final_traders.sort_values(by="creation_date", ascending=True)
|
| 200 |
# Create binary staking category
|
| 201 |
final_traders["trader_type"] = final_traders["staking"].apply(
|
| 202 |
+
lambda x: "non_Olas" if x == "non_Olas" else "Olas"
|
| 203 |
)
|
| 204 |
|
| 205 |
total_bet_amount = (
|
|
|
|
| 245 |
category_orders={
|
| 246 |
"market_creator": ["pearl", "quickstart", "all"],
|
| 247 |
"trader_market": [
|
| 248 |
+
("Olas", "pearl"),
|
| 249 |
+
("non_Olas", "pearl"),
|
| 250 |
+
("Olas", "quickstart"),
|
| 251 |
+
("non_Olas", "quickstart"),
|
| 252 |
+
("Olas", "all"),
|
| 253 |
+
("non_Olas", "all"),
|
| 254 |
],
|
| 255 |
},
|
| 256 |
barmode="group",
|
|
|
|
| 261 |
yaxis_title="Weekly total bet amount per trader type",
|
| 262 |
legend=dict(yanchor="top", y=0.5),
|
| 263 |
)
|
| 264 |
+
|
|
|
|
|
|
|
| 265 |
fig.update_xaxes(tickformat="%b %d")
|
| 266 |
# Update layout to force x-axis category order (hotfix for a sorting issue)
|
| 267 |
fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})
|