Spaces:
Runtime error
Runtime error
cyberosa
commited on
Commit
ยท
3498a52
1
Parent(s):
8704528
new money invested tabs and graphs
Browse files- app.py +18 -25
- tabs/market_plots.py +11 -63
- tabs/trader_plots.py +57 -0
app.py
CHANGED
|
@@ -17,6 +17,7 @@ from tabs.trader_plots import (
|
|
| 17 |
get_metrics_text,
|
| 18 |
plot_winning_metric_per_trader,
|
| 19 |
get_interpretation_text,
|
|
|
|
| 20 |
)
|
| 21 |
from tabs.daily_graphs import (
|
| 22 |
get_current_week_data,
|
|
@@ -27,7 +28,6 @@ from tabs.daily_graphs import (
|
|
| 27 |
from scripts.utils import get_traders_family
|
| 28 |
from tabs.market_plots import (
|
| 29 |
plot_kl_div_per_market,
|
| 30 |
-
plot_nr_trades_per_trader_per_market,
|
| 31 |
plot_total_bet_amount_per_trader_per_market,
|
| 32 |
)
|
| 33 |
|
|
@@ -406,56 +406,49 @@ with demo:
|
|
| 406 |
with gr.Column(scale=1):
|
| 407 |
interpretation = get_interpretation_text()
|
| 408 |
|
| 409 |
-
with gr.TabItem("
|
| 410 |
with gr.Row():
|
| 411 |
-
gr.Markdown(
|
| 412 |
-
"# Weekly nr of trades per trader per market for all traders"
|
| 413 |
-
)
|
| 414 |
-
|
| 415 |
with gr.Row():
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
)
|
| 419 |
with gr.Row():
|
| 420 |
gr.Markdown(
|
| 421 |
-
"# Weekly
|
| 422 |
)
|
| 423 |
-
|
| 424 |
with gr.Row():
|
| 425 |
-
|
| 426 |
trader_agents_data, trader_filter="agent"
|
| 427 |
)
|
|
|
|
| 428 |
with gr.Row():
|
| 429 |
gr.Markdown(
|
| 430 |
-
"# Weekly
|
| 431 |
)
|
| 432 |
-
|
| 433 |
with gr.Row():
|
| 434 |
-
|
| 435 |
trader_agents_data, trader_filter="non_agent"
|
| 436 |
)
|
| 437 |
-
with gr.TabItem("๐ฐ Money invested"):
|
| 438 |
with gr.Row():
|
| 439 |
-
gr.Markdown("# Weekly
|
| 440 |
with gr.Row():
|
| 441 |
-
|
| 442 |
trader_agents_data
|
| 443 |
)
|
| 444 |
|
| 445 |
with gr.Row():
|
| 446 |
-
gr.Markdown("# Weekly
|
| 447 |
with gr.Row():
|
| 448 |
-
|
| 449 |
trader_agents_data, trader_filter="agent"
|
| 450 |
)
|
| 451 |
|
| 452 |
with gr.Row():
|
| 453 |
-
gr.Markdown("# Weekly
|
| 454 |
with gr.Row():
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
trader_agents_data, trader_filter="non_agent"
|
| 458 |
-
)
|
| 459 |
)
|
| 460 |
|
| 461 |
with gr.TabItem("๐๏ธWeekly winning trades % per trader"):
|
|
|
|
| 17 |
get_metrics_text,
|
| 18 |
plot_winning_metric_per_trader,
|
| 19 |
get_interpretation_text,
|
| 20 |
+
plot_total_bet_amount,
|
| 21 |
)
|
| 22 |
from tabs.daily_graphs import (
|
| 23 |
get_current_week_data,
|
|
|
|
| 28 |
from scripts.utils import get_traders_family
|
| 29 |
from tabs.market_plots import (
|
| 30 |
plot_kl_div_per_market,
|
|
|
|
| 31 |
plot_total_bet_amount_per_trader_per_market,
|
| 32 |
)
|
| 33 |
|
|
|
|
| 406 |
with gr.Column(scale=1):
|
| 407 |
interpretation = get_interpretation_text()
|
| 408 |
|
| 409 |
+
with gr.TabItem("๐ฐ Money invested per trader"):
|
| 410 |
with gr.Row():
|
| 411 |
+
gr.Markdown("# Weekly total bet amount per trader for all traders")
|
|
|
|
|
|
|
|
|
|
| 412 |
with gr.Row():
|
| 413 |
+
total_bet_amount = plot_total_bet_amount(trader_agents_data)
|
| 414 |
+
|
|
|
|
| 415 |
with gr.Row():
|
| 416 |
gr.Markdown(
|
| 417 |
+
"# Weekly total bet amount per trader for traders Agents ๐ค"
|
| 418 |
)
|
|
|
|
| 419 |
with gr.Row():
|
| 420 |
+
a_trader_total_bet_amount = plot_total_bet_amount(
|
| 421 |
trader_agents_data, trader_filter="agent"
|
| 422 |
)
|
| 423 |
+
|
| 424 |
with gr.Row():
|
| 425 |
gr.Markdown(
|
| 426 |
+
"# Weekly total bet amount per trader for Non-agent traders"
|
| 427 |
)
|
|
|
|
| 428 |
with gr.Row():
|
| 429 |
+
na_trader_total_bet_amount = plot_total_bet_amount(
|
| 430 |
trader_agents_data, trader_filter="non_agent"
|
| 431 |
)
|
| 432 |
+
with gr.TabItem("๐ฐ Money invested per market"):
|
| 433 |
with gr.Row():
|
| 434 |
+
gr.Markdown("# Weekly bet amounts per market for all traders")
|
| 435 |
with gr.Row():
|
| 436 |
+
bet_amounts = plot_total_bet_amount_per_trader_per_market(
|
| 437 |
trader_agents_data
|
| 438 |
)
|
| 439 |
|
| 440 |
with gr.Row():
|
| 441 |
+
gr.Markdown("# Weekly bet amounts per market for traders Agents ๐ค")
|
| 442 |
with gr.Row():
|
| 443 |
+
a_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
|
| 444 |
trader_agents_data, trader_filter="agent"
|
| 445 |
)
|
| 446 |
|
| 447 |
with gr.Row():
|
| 448 |
+
gr.Markdown("# Weekly bet amounts per market for Non-agent traders")
|
| 449 |
with gr.Row():
|
| 450 |
+
na_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
|
| 451 |
+
trader_agents_data, trader_filter="non_agent"
|
|
|
|
|
|
|
| 452 |
)
|
| 453 |
|
| 454 |
with gr.TabItem("๐๏ธWeekly winning trades % per trader"):
|
tabs/market_plots.py
CHANGED
|
@@ -7,6 +7,15 @@ import matplotlib.pyplot as plt
|
|
| 7 |
import seaborn as sns
|
| 8 |
from tabs.daily_graphs import color_mapping
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
def plot_kl_div_per_market(closed_markets: pd.DataFrame) -> gr.Plot:
|
| 12 |
|
|
@@ -88,67 +97,6 @@ def plot_kl_div_with_off_by(closed_markets: pd.DataFrame) -> gr.Plot:
|
|
| 88 |
)
|
| 89 |
|
| 90 |
|
| 91 |
-
def plot_total_bet_amount(trades_df: pd.DataFrame) -> gr.Plot:
|
| 92 |
-
"""Plots the trade metrics."""
|
| 93 |
-
# Create binary staking category
|
| 94 |
-
trades_df["trader_type"] = trades_df["staking"].apply(
|
| 95 |
-
lambda x: "non_agent" if x == "non_agent" else "agent"
|
| 96 |
-
)
|
| 97 |
-
|
| 98 |
-
total_bet_amount = (
|
| 99 |
-
trades_df.groupby(
|
| 100 |
-
["month_year_week", "market_creator", "trader_type"], sort=False
|
| 101 |
-
)["collateral_amount"]
|
| 102 |
-
.sum()
|
| 103 |
-
.reset_index(name="total_bet_amount")
|
| 104 |
-
)
|
| 105 |
-
color_mapping = [
|
| 106 |
-
"darkviolet",
|
| 107 |
-
"purple",
|
| 108 |
-
"goldenrod",
|
| 109 |
-
"darkgoldenrod",
|
| 110 |
-
"green",
|
| 111 |
-
"darkgreen",
|
| 112 |
-
]
|
| 113 |
-
total_bet_amount["trader_market"] = total_bet_amount.apply(
|
| 114 |
-
lambda x: (x["trader_type"], x["market_creator"]), axis=1
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
fig = px.bar(
|
| 118 |
-
total_bet_amount,
|
| 119 |
-
x="month_year_week",
|
| 120 |
-
y="total_bet_amount",
|
| 121 |
-
color="trader_market",
|
| 122 |
-
color_discrete_sequence=color_mapping,
|
| 123 |
-
category_orders={
|
| 124 |
-
"market_creator": ["pearl", "quickstart", "all"],
|
| 125 |
-
"trader_market": [
|
| 126 |
-
("agent", "pearl"),
|
| 127 |
-
("non_agent", "pearl"),
|
| 128 |
-
("agent", "quickstart"),
|
| 129 |
-
("non_agent", "quickstart"),
|
| 130 |
-
("agent", "all"),
|
| 131 |
-
("non_agent", "all"),
|
| 132 |
-
],
|
| 133 |
-
},
|
| 134 |
-
barmode="group",
|
| 135 |
-
facet_col="market_creator",
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
fig.update_layout(
|
| 139 |
-
xaxis_title="Week",
|
| 140 |
-
yaxis_title="Weekly total bet amount",
|
| 141 |
-
legend=dict(yanchor="top", y=0.5),
|
| 142 |
-
)
|
| 143 |
-
for axis in fig.layout:
|
| 144 |
-
if axis.startswith("xaxis"):
|
| 145 |
-
fig.layout[axis].update(title="Week")
|
| 146 |
-
fig.update_xaxes(tickformat="%b %d")
|
| 147 |
-
return gr.Plot(
|
| 148 |
-
value=fig,
|
| 149 |
-
)
|
| 150 |
-
|
| 151 |
-
|
| 152 |
def plot_total_bet_amount_per_trader_per_market(
|
| 153 |
trades_df: pd.DataFrame, trader_filter: str = "all"
|
| 154 |
) -> gr.Plot:
|
|
@@ -202,10 +150,10 @@ def plot_total_bet_amount_per_trader_per_market(
|
|
| 202 |
},
|
| 203 |
# facet_col="trader_type",
|
| 204 |
)
|
| 205 |
-
|
| 206 |
fig.update_layout(
|
| 207 |
xaxis_title="Week",
|
| 208 |
-
yaxis_title="Weekly
|
| 209 |
legend=dict(yanchor="top", y=0.5),
|
| 210 |
width=1000, # Adjusted for better fit on laptop screens
|
| 211 |
height=600, # Adjusted for better fit on laptop screens
|
|
|
|
| 7 |
import seaborn as sns
|
| 8 |
from tabs.daily_graphs import color_mapping
|
| 9 |
|
| 10 |
+
color_mapping = [
|
| 11 |
+
"darkviolet",
|
| 12 |
+
"purple",
|
| 13 |
+
"goldenrod",
|
| 14 |
+
"darkgoldenrod",
|
| 15 |
+
"green",
|
| 16 |
+
"darkgreen",
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
|
| 20 |
def plot_kl_div_per_market(closed_markets: pd.DataFrame) -> gr.Plot:
|
| 21 |
|
|
|
|
| 97 |
)
|
| 98 |
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
def plot_total_bet_amount_per_trader_per_market(
|
| 101 |
trades_df: pd.DataFrame, trader_filter: str = "all"
|
| 102 |
) -> gr.Plot:
|
|
|
|
| 150 |
},
|
| 151 |
# facet_col="trader_type",
|
| 152 |
)
|
| 153 |
+
fig.update_traces(boxmean=True)
|
| 154 |
fig.update_layout(
|
| 155 |
xaxis_title="Week",
|
| 156 |
+
yaxis_title="Weekly bet amounts per trader per market",
|
| 157 |
legend=dict(yanchor="top", y=0.5),
|
| 158 |
width=1000, # Adjusted for better fit on laptop screens
|
| 159 |
height=600, # Adjusted for better fit on laptop screens
|
tabs/trader_plots.py
CHANGED
|
@@ -173,3 +173,60 @@ def plot_winning_metric_per_trader(traders_winning_df: pd.DataFrame) -> gr.Plot:
|
|
| 173 |
return gr.Plot(
|
| 174 |
value=fig,
|
| 175 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
return gr.Plot(
|
| 174 |
value=fig,
|
| 175 |
)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def plot_total_bet_amount(
|
| 179 |
+
trades_df: pd.DataFrame, trader_filter: str = "all"
|
| 180 |
+
) -> gr.Plot:
|
| 181 |
+
"""Plots the trade metrics."""
|
| 182 |
+
traders_all = trades_df.copy(deep=True)
|
| 183 |
+
traders_all["market_creator"] = "all"
|
| 184 |
+
|
| 185 |
+
# merging both dataframes
|
| 186 |
+
final_traders = pd.concat([traders_all, trades_df], ignore_index=True)
|
| 187 |
+
final_traders = final_traders.sort_values(by="creation_date", ascending=True)
|
| 188 |
+
# Create binary staking category
|
| 189 |
+
final_traders["trader_type"] = final_traders["staking"].apply(
|
| 190 |
+
lambda x: "non_agent" if x == "non_agent" else "agent"
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
|
| 194 |
+
if trader_filter == "agent":
|
| 195 |
+
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
| 196 |
+
final_traders = final_traders.loc[final_traders["trader_type"] == "agent"]
|
| 197 |
+
elif trader_filter == "non_agent":
|
| 198 |
+
final_traders = final_traders.loc[final_traders["trader_type"] != "agent"]
|
| 199 |
+
|
| 200 |
+
total_bet_amount = (
|
| 201 |
+
final_traders.groupby(
|
| 202 |
+
["month_year_week", "market_creator", "trader_address"], sort=False
|
| 203 |
+
)["collateral_amount"]
|
| 204 |
+
.sum()
|
| 205 |
+
.reset_index(name="total_bet_amount")
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
fig = px.box(
|
| 209 |
+
total_bet_amount,
|
| 210 |
+
x="month_year_week",
|
| 211 |
+
y="total_bet_amount",
|
| 212 |
+
color="market_creator",
|
| 213 |
+
color_discrete_sequence=color_discrete_sequence,
|
| 214 |
+
category_orders={
|
| 215 |
+
"market_creator": ["pearl", "quickstart", "all"],
|
| 216 |
+
},
|
| 217 |
+
# barmode="group",
|
| 218 |
+
# facet_col="market_creator",
|
| 219 |
+
)
|
| 220 |
+
fig.update_traces(boxmean=True)
|
| 221 |
+
fig.update_layout(
|
| 222 |
+
xaxis_title="Week",
|
| 223 |
+
yaxis_title="Weekly total bet amount",
|
| 224 |
+
legend=dict(yanchor="top", y=0.5),
|
| 225 |
+
)
|
| 226 |
+
# for axis in fig.layout:
|
| 227 |
+
# if axis.startswith("xaxis"):
|
| 228 |
+
# fig.layout[axis].update(title="Week")
|
| 229 |
+
fig.update_xaxes(tickformat="%b %d")
|
| 230 |
+
return gr.Plot(
|
| 231 |
+
value=fig,
|
| 232 |
+
)
|