Spaces:
Runtime error
Runtime error
cyberosa
commited on
Commit
Β·
52d1750
1
Parent(s):
d41146f
Adding divergence graph
Browse files- app.py +36 -8
- data/closed_markets_div.parquet +3 -0
- data/fpmms.parquet +3 -0
- notebooks/closed_markets.ipynb +1481 -0
- scripts/closed_markets_divergence.py +252 -0
- scripts/metrics.py +3 -3
- tabs/market_plots.py +37 -0
- tabs/trader_plots.py +1 -1
app.py
CHANGED
|
@@ -14,9 +14,11 @@ from tabs.trader_plots import (
|
|
| 14 |
plot_trader_metrics_by_trader_type,
|
| 15 |
default_trader_metric,
|
| 16 |
trader_metric_choices,
|
| 17 |
-
|
| 18 |
)
|
| 19 |
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def get_logger():
|
| 22 |
logger = logging.getLogger(__name__)
|
|
@@ -37,7 +39,7 @@ logger = get_logger()
|
|
| 37 |
|
| 38 |
def get_all_data():
|
| 39 |
"""
|
| 40 |
-
Get parquet
|
| 41 |
"""
|
| 42 |
logger.info("Getting traders data")
|
| 43 |
con = duckdb.connect(":memory:")
|
|
@@ -49,14 +51,22 @@ def get_all_data():
|
|
| 49 |
df1 = con.execute(query1).fetchdf()
|
| 50 |
logger.info("Got all data from all_trades_profitability.parquet")
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
con.close()
|
| 53 |
|
| 54 |
-
return df1
|
| 55 |
|
| 56 |
|
| 57 |
def prepare_data():
|
| 58 |
|
| 59 |
-
all_trades = get_all_data()
|
| 60 |
|
| 61 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
| 62 |
|
|
@@ -81,10 +91,14 @@ def prepare_data():
|
|
| 81 |
trader_agents_data["month_year_week"] = (
|
| 82 |
trader_agents_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
| 83 |
)
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
|
| 87 |
-
trader_agents_data = prepare_data()
|
| 88 |
print("trader agents data before computing metrics")
|
| 89 |
print(trader_agents_data.head())
|
| 90 |
demo = gr.Blocks()
|
|
@@ -122,7 +136,7 @@ with demo:
|
|
| 122 |
traders_df=weekly_metrics_by_market_creator,
|
| 123 |
)
|
| 124 |
with gr.Column(scale=1):
|
| 125 |
-
trade_details_text =
|
| 126 |
|
| 127 |
def update_trader_details(trader_detail):
|
| 128 |
return plot_trader_metrics_by_market_creator(
|
|
@@ -154,7 +168,7 @@ with demo:
|
|
| 154 |
traders_df=weekly_metrics_by_trader_type,
|
| 155 |
)
|
| 156 |
with gr.Column(scale=1):
|
| 157 |
-
trader_metrics_text =
|
| 158 |
|
| 159 |
def update_trader_metric(trader_metric):
|
| 160 |
return plot_trader_metrics_by_trader_type(
|
|
@@ -167,5 +181,19 @@ with demo:
|
|
| 167 |
inputs=trader_metric_selector,
|
| 168 |
outputs=trader_type_plot,
|
| 169 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 14 |
plot_trader_metrics_by_trader_type,
|
| 15 |
default_trader_metric,
|
| 16 |
trader_metric_choices,
|
| 17 |
+
get_metrics_text,
|
| 18 |
)
|
| 19 |
|
| 20 |
+
from tabs.market_plots import plot_kl_div_per_market
|
| 21 |
+
|
| 22 |
|
| 23 |
def get_logger():
|
| 24 |
logger = logging.getLogger(__name__)
|
|
|
|
| 39 |
|
| 40 |
def get_all_data():
|
| 41 |
"""
|
| 42 |
+
Get parquet files from weekly stats and new generated
|
| 43 |
"""
|
| 44 |
logger.info("Getting traders data")
|
| 45 |
con = duckdb.connect(":memory:")
|
|
|
|
| 51 |
df1 = con.execute(query1).fetchdf()
|
| 52 |
logger.info("Got all data from all_trades_profitability.parquet")
|
| 53 |
|
| 54 |
+
# Query to fetch data from closed_markets_div.parquet
|
| 55 |
+
query2 = f"""
|
| 56 |
+
SELECT *
|
| 57 |
+
FROM read_parquet('./data/closed_markets_div.parquet')
|
| 58 |
+
"""
|
| 59 |
+
df2 = con.execute(query2).fetchdf()
|
| 60 |
+
logger.info("Got all data from closed_markets_div.parquet")
|
| 61 |
+
|
| 62 |
con.close()
|
| 63 |
|
| 64 |
+
return df1, df2
|
| 65 |
|
| 66 |
|
| 67 |
def prepare_data():
|
| 68 |
|
| 69 |
+
all_trades, closed_markets = get_all_data()
|
| 70 |
|
| 71 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
| 72 |
|
|
|
|
| 91 |
trader_agents_data["month_year_week"] = (
|
| 92 |
trader_agents_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
| 93 |
)
|
| 94 |
+
|
| 95 |
+
closed_markets["month_year_week"] = (
|
| 96 |
+
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
|
| 97 |
+
)
|
| 98 |
+
return trader_agents_data, closed_markets
|
| 99 |
|
| 100 |
|
| 101 |
+
trader_agents_data, closed_markets = prepare_data()
|
| 102 |
print("trader agents data before computing metrics")
|
| 103 |
print(trader_agents_data.head())
|
| 104 |
demo = gr.Blocks()
|
|
|
|
| 136 |
traders_df=weekly_metrics_by_market_creator,
|
| 137 |
)
|
| 138 |
with gr.Column(scale=1):
|
| 139 |
+
trade_details_text = get_metrics_text()
|
| 140 |
|
| 141 |
def update_trader_details(trader_detail):
|
| 142 |
return plot_trader_metrics_by_market_creator(
|
|
|
|
| 168 |
traders_df=weekly_metrics_by_trader_type,
|
| 169 |
)
|
| 170 |
with gr.Column(scale=1):
|
| 171 |
+
trader_metrics_text = get_metrics_text()
|
| 172 |
|
| 173 |
def update_trader_metric(trader_metric):
|
| 174 |
return plot_trader_metrics_by_trader_type(
|
|
|
|
| 181 |
inputs=trader_metric_selector,
|
| 182 |
outputs=trader_type_plot,
|
| 183 |
)
|
| 184 |
+
with gr.TabItem("πClosed Markets KullbackβLeibler divergence"):
|
| 185 |
+
with gr.Row():
|
| 186 |
+
gr.Markdown(
|
| 187 |
+
"# Weekly KullbackβLeibler divergence computed for the closed markets"
|
| 188 |
+
)
|
| 189 |
+
with gr.Row():
|
| 190 |
+
gr.Markdown(
|
| 191 |
+
"This divergence is a type of statistical distance between two probability distributions P and Q. In our case P is the probability defined by the final liquidity distribution of the market. While Q is the distribution of the final outcome."
|
| 192 |
+
)
|
| 193 |
+
with gr.Row():
|
| 194 |
+
with gr.Column(scale=3):
|
| 195 |
+
kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets)
|
| 196 |
+
with gr.Column(scale=1):
|
| 197 |
+
metrics_text = get_metrics_text()
|
| 198 |
|
| 199 |
demo.queue(default_concurrency_limit=40).launch()
|
data/closed_markets_div.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01028e48165f8e468cd377da59e13da584a0938cdc64549dee2a1c523d6e1b13
|
| 3 |
+
size 48695
|
data/fpmms.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86135bb64013c54d5180c31fca13235943eb39571e760a695dac2aaa1e9cb1ce
|
| 3 |
+
size 436427
|
notebooks/closed_markets.ipynb
ADDED
|
@@ -0,0 +1,1481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import pandas as pd"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": 20,
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"try:\n",
|
| 19 |
+
" markets = pd.read_parquet(\"../data/fpmms.parquet\")\n",
|
| 20 |
+
"except Exception:\n",
|
| 21 |
+
" print(\"Error reading the parquet file\")\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"markets[\"currentAnswer\"] = markets[\"currentAnswer\"].apply(lambda x: x.lower())\n",
|
| 24 |
+
"# filter only markets with yes, no answers\n",
|
| 25 |
+
"valid_answers = [\"yes\", \"no\"]\n",
|
| 26 |
+
"markets = markets.loc[markets[\"currentAnswer\"].isin(valid_answers)]"
|
| 27 |
+
]
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "code",
|
| 31 |
+
"execution_count": 3,
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"outputs": [
|
| 34 |
+
{
|
| 35 |
+
"data": {
|
| 36 |
+
"text/plain": [
|
| 37 |
+
"4686"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
"execution_count": 3,
|
| 41 |
+
"metadata": {},
|
| 42 |
+
"output_type": "execute_result"
|
| 43 |
+
}
|
| 44 |
+
],
|
| 45 |
+
"source": [
|
| 46 |
+
"len(markets)"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": 4,
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"outputs": [
|
| 54 |
+
{
|
| 55 |
+
"data": {
|
| 56 |
+
"text/plain": [
|
| 57 |
+
"4686"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
"execution_count": 4,
|
| 61 |
+
"metadata": {},
|
| 62 |
+
"output_type": "execute_result"
|
| 63 |
+
}
|
| 64 |
+
],
|
| 65 |
+
"source": [
|
| 66 |
+
"len(markets.id.unique())"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": 5,
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"outputs": [
|
| 74 |
+
{
|
| 75 |
+
"data": {
|
| 76 |
+
"text/html": [
|
| 77 |
+
"<div>\n",
|
| 78 |
+
"<style scoped>\n",
|
| 79 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 80 |
+
" vertical-align: middle;\n",
|
| 81 |
+
" }\n",
|
| 82 |
+
"\n",
|
| 83 |
+
" .dataframe tbody tr th {\n",
|
| 84 |
+
" vertical-align: top;\n",
|
| 85 |
+
" }\n",
|
| 86 |
+
"\n",
|
| 87 |
+
" .dataframe thead th {\n",
|
| 88 |
+
" text-align: right;\n",
|
| 89 |
+
" }\n",
|
| 90 |
+
"</style>\n",
|
| 91 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 92 |
+
" <thead>\n",
|
| 93 |
+
" <tr style=\"text-align: right;\">\n",
|
| 94 |
+
" <th></th>\n",
|
| 95 |
+
" <th>currentAnswer</th>\n",
|
| 96 |
+
" <th>id</th>\n",
|
| 97 |
+
" <th>title</th>\n",
|
| 98 |
+
" <th>market_creator</th>\n",
|
| 99 |
+
" </tr>\n",
|
| 100 |
+
" </thead>\n",
|
| 101 |
+
" <tbody>\n",
|
| 102 |
+
" <tr>\n",
|
| 103 |
+
" <th>0</th>\n",
|
| 104 |
+
" <td>no</td>\n",
|
| 105 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5</td>\n",
|
| 106 |
+
" <td>Will the first floating offshore wind research...</td>\n",
|
| 107 |
+
" <td>quickstart</td>\n",
|
| 108 |
+
" </tr>\n",
|
| 109 |
+
" <tr>\n",
|
| 110 |
+
" <th>1</th>\n",
|
| 111 |
+
" <td>no</td>\n",
|
| 112 |
+
" <td>0x0020d13c89140b47e10db54cbd53852b90bc1391</td>\n",
|
| 113 |
+
" <td>Will the Francis Scott Key Bridge in Baltimore...</td>\n",
|
| 114 |
+
" <td>quickstart</td>\n",
|
| 115 |
+
" </tr>\n",
|
| 116 |
+
" <tr>\n",
|
| 117 |
+
" <th>2</th>\n",
|
| 118 |
+
" <td>no</td>\n",
|
| 119 |
+
" <td>0x003ae5e007cc38b3f86b0ed7c82f938a1285ac07</td>\n",
|
| 120 |
+
" <td>Will FC Saarbrucken reach the final of the Ger...</td>\n",
|
| 121 |
+
" <td>quickstart</td>\n",
|
| 122 |
+
" </tr>\n",
|
| 123 |
+
" <tr>\n",
|
| 124 |
+
" <th>3</th>\n",
|
| 125 |
+
" <td>yes</td>\n",
|
| 126 |
+
" <td>0x004c8d4c619dc6b9caa940f5ea7ef699ae85359c</td>\n",
|
| 127 |
+
" <td>Will the pro-life activists convicted for 'con...</td>\n",
|
| 128 |
+
" <td>quickstart</td>\n",
|
| 129 |
+
" </tr>\n",
|
| 130 |
+
" <tr>\n",
|
| 131 |
+
" <th>4</th>\n",
|
| 132 |
+
" <td>yes</td>\n",
|
| 133 |
+
" <td>0x005e3f7a90585acbec807425a750fbba1d0c2b5c</td>\n",
|
| 134 |
+
" <td>Will Apple announce the release of a new M4 ch...</td>\n",
|
| 135 |
+
" <td>quickstart</td>\n",
|
| 136 |
+
" </tr>\n",
|
| 137 |
+
" </tbody>\n",
|
| 138 |
+
"</table>\n",
|
| 139 |
+
"</div>"
|
| 140 |
+
],
|
| 141 |
+
"text/plain": [
|
| 142 |
+
" currentAnswer id \\\n",
|
| 143 |
+
"0 no 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5 \n",
|
| 144 |
+
"1 no 0x0020d13c89140b47e10db54cbd53852b90bc1391 \n",
|
| 145 |
+
"2 no 0x003ae5e007cc38b3f86b0ed7c82f938a1285ac07 \n",
|
| 146 |
+
"3 yes 0x004c8d4c619dc6b9caa940f5ea7ef699ae85359c \n",
|
| 147 |
+
"4 yes 0x005e3f7a90585acbec807425a750fbba1d0c2b5c \n",
|
| 148 |
+
"\n",
|
| 149 |
+
" title market_creator \n",
|
| 150 |
+
"0 Will the first floating offshore wind research... quickstart \n",
|
| 151 |
+
"1 Will the Francis Scott Key Bridge in Baltimore... quickstart \n",
|
| 152 |
+
"2 Will FC Saarbrucken reach the final of the Ger... quickstart \n",
|
| 153 |
+
"3 Will the pro-life activists convicted for 'con... quickstart \n",
|
| 154 |
+
"4 Will Apple announce the release of a new M4 ch... quickstart "
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
"execution_count": 5,
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"output_type": "execute_result"
|
| 160 |
+
}
|
| 161 |
+
],
|
| 162 |
+
"source": [
|
| 163 |
+
"markets.head()"
|
| 164 |
+
]
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"cell_type": "code",
|
| 168 |
+
"execution_count": null,
|
| 169 |
+
"metadata": {},
|
| 170 |
+
"outputs": [],
|
| 171 |
+
"source": []
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": 6,
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"outputs": [],
|
| 178 |
+
"source": [
|
| 179 |
+
"trades = pd.read_parquet(\"../data/fpmmTrades.parquet\")"
|
| 180 |
+
]
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"cell_type": "code",
|
| 184 |
+
"execution_count": 7,
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"outputs": [
|
| 187 |
+
{
|
| 188 |
+
"data": {
|
| 189 |
+
"text/html": [
|
| 190 |
+
"<div>\n",
|
| 191 |
+
"<style scoped>\n",
|
| 192 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 193 |
+
" vertical-align: middle;\n",
|
| 194 |
+
" }\n",
|
| 195 |
+
"\n",
|
| 196 |
+
" .dataframe tbody tr th {\n",
|
| 197 |
+
" vertical-align: top;\n",
|
| 198 |
+
" }\n",
|
| 199 |
+
"\n",
|
| 200 |
+
" .dataframe thead th {\n",
|
| 201 |
+
" text-align: right;\n",
|
| 202 |
+
" }\n",
|
| 203 |
+
"</style>\n",
|
| 204 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 205 |
+
" <thead>\n",
|
| 206 |
+
" <tr style=\"text-align: right;\">\n",
|
| 207 |
+
" <th></th>\n",
|
| 208 |
+
" <th>collateralAmount</th>\n",
|
| 209 |
+
" <th>collateralAmountUSD</th>\n",
|
| 210 |
+
" <th>collateralToken</th>\n",
|
| 211 |
+
" <th>creationTimestamp</th>\n",
|
| 212 |
+
" <th>trader_address</th>\n",
|
| 213 |
+
" <th>feeAmount</th>\n",
|
| 214 |
+
" <th>id</th>\n",
|
| 215 |
+
" <th>oldOutcomeTokenMarginalPrice</th>\n",
|
| 216 |
+
" <th>outcomeIndex</th>\n",
|
| 217 |
+
" <th>outcomeTokenMarginalPrice</th>\n",
|
| 218 |
+
" <th>...</th>\n",
|
| 219 |
+
" <th>market_creator</th>\n",
|
| 220 |
+
" <th>fpmm.answerFinalizedTimestamp</th>\n",
|
| 221 |
+
" <th>fpmm.arbitrationOccurred</th>\n",
|
| 222 |
+
" <th>fpmm.currentAnswer</th>\n",
|
| 223 |
+
" <th>fpmm.id</th>\n",
|
| 224 |
+
" <th>fpmm.isPendingArbitration</th>\n",
|
| 225 |
+
" <th>fpmm.openingTimestamp</th>\n",
|
| 226 |
+
" <th>fpmm.outcomes</th>\n",
|
| 227 |
+
" <th>fpmm.title</th>\n",
|
| 228 |
+
" <th>fpmm.condition.id</th>\n",
|
| 229 |
+
" </tr>\n",
|
| 230 |
+
" </thead>\n",
|
| 231 |
+
" <tbody>\n",
|
| 232 |
+
" <tr>\n",
|
| 233 |
+
" <th>0</th>\n",
|
| 234 |
+
" <td>450426474650738688</td>\n",
|
| 235 |
+
" <td>0.4504269694034145716308073094168006</td>\n",
|
| 236 |
+
" <td>0xe91d153e0b41518a2ce8dd3d7944fa863463a97d</td>\n",
|
| 237 |
+
" <td>1724553455</td>\n",
|
| 238 |
+
" <td>0x022b36c50b85b8ae7addfb8a35d76c59d5814834</td>\n",
|
| 239 |
+
" <td>9008529493014773</td>\n",
|
| 240 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f50x02...</td>\n",
|
| 241 |
+
" <td>0.592785210609610270634125335572129</td>\n",
|
| 242 |
+
" <td>1</td>\n",
|
| 243 |
+
" <td>0.6171295391012242250994586583534301</td>\n",
|
| 244 |
+
" <td>...</td>\n",
|
| 245 |
+
" <td>quickstart</td>\n",
|
| 246 |
+
" <td>1725071760</td>\n",
|
| 247 |
+
" <td>False</td>\n",
|
| 248 |
+
" <td>0x00000000000000000000000000000000000000000000...</td>\n",
|
| 249 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5</td>\n",
|
| 250 |
+
" <td>False</td>\n",
|
| 251 |
+
" <td>1724976000</td>\n",
|
| 252 |
+
" <td>[Yes, No]</td>\n",
|
| 253 |
+
" <td>Will the first floating offshore wind research...</td>\n",
|
| 254 |
+
" <td>0x0e940f12f30e928e4879c52d065d9da739a3d3f020d1...</td>\n",
|
| 255 |
+
" </tr>\n",
|
| 256 |
+
" <tr>\n",
|
| 257 |
+
" <th>1</th>\n",
|
| 258 |
+
" <td>610163214546941400</td>\n",
|
| 259 |
+
" <td>0.6101636232215150135654007337015298</td>\n",
|
| 260 |
+
" <td>0xe91d153e0b41518a2ce8dd3d7944fa863463a97d</td>\n",
|
| 261 |
+
" <td>1724811940</td>\n",
|
| 262 |
+
" <td>0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736</td>\n",
|
| 263 |
+
" <td>12203264290938828</td>\n",
|
| 264 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f50x03...</td>\n",
|
| 265 |
+
" <td>0.842992636523755061934822129394812</td>\n",
|
| 266 |
+
" <td>1</td>\n",
|
| 267 |
+
" <td>0.8523396372892128845826889719620915</td>\n",
|
| 268 |
+
" <td>...</td>\n",
|
| 269 |
+
" <td>quickstart</td>\n",
|
| 270 |
+
" <td>1725071760</td>\n",
|
| 271 |
+
" <td>False</td>\n",
|
| 272 |
+
" <td>0x00000000000000000000000000000000000000000000...</td>\n",
|
| 273 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5</td>\n",
|
| 274 |
+
" <td>False</td>\n",
|
| 275 |
+
" <td>1724976000</td>\n",
|
| 276 |
+
" <td>[Yes, No]</td>\n",
|
| 277 |
+
" <td>Will the first floating offshore wind research...</td>\n",
|
| 278 |
+
" <td>0x0e940f12f30e928e4879c52d065d9da739a3d3f020d1...</td>\n",
|
| 279 |
+
" </tr>\n",
|
| 280 |
+
" <tr>\n",
|
| 281 |
+
" <th>2</th>\n",
|
| 282 |
+
" <td>789065092332460672</td>\n",
|
| 283 |
+
" <td>0.7890644120527324071908793822796086</td>\n",
|
| 284 |
+
" <td>0xe91d153e0b41518a2ce8dd3d7944fa863463a97d</td>\n",
|
| 285 |
+
" <td>1724815755</td>\n",
|
| 286 |
+
" <td>0x09e9d42a029e8b0c2df3871709a762117a681d92</td>\n",
|
| 287 |
+
" <td>15781301846649213</td>\n",
|
| 288 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f50x09...</td>\n",
|
| 289 |
+
" <td>0.7983775743712442891104598770339028</td>\n",
|
| 290 |
+
" <td>1</td>\n",
|
| 291 |
+
" <td>0.8152123711444691659642000374025623</td>\n",
|
| 292 |
+
" <td>...</td>\n",
|
| 293 |
+
" <td>quickstart</td>\n",
|
| 294 |
+
" <td>1725071760</td>\n",
|
| 295 |
+
" <td>False</td>\n",
|
| 296 |
+
" <td>0x00000000000000000000000000000000000000000000...</td>\n",
|
| 297 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5</td>\n",
|
| 298 |
+
" <td>False</td>\n",
|
| 299 |
+
" <td>1724976000</td>\n",
|
| 300 |
+
" <td>[Yes, No]</td>\n",
|
| 301 |
+
" <td>Will the first floating offshore wind research...</td>\n",
|
| 302 |
+
" <td>0x0e940f12f30e928e4879c52d065d9da739a3d3f020d1...</td>\n",
|
| 303 |
+
" </tr>\n",
|
| 304 |
+
" <tr>\n",
|
| 305 |
+
" <th>3</th>\n",
|
| 306 |
+
" <td>1000000000000000000</td>\n",
|
| 307 |
+
" <td>1.000000605383660329048491794939126</td>\n",
|
| 308 |
+
" <td>0xe91d153e0b41518a2ce8dd3d7944fa863463a97d</td>\n",
|
| 309 |
+
" <td>1724546620</td>\n",
|
| 310 |
+
" <td>0x09e9d42a029e8b0c2df3871709a762117a681d92</td>\n",
|
| 311 |
+
" <td>20000000000000000</td>\n",
|
| 312 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f50x09...</td>\n",
|
| 313 |
+
" <td>0.5110745907733438805447072252622708</td>\n",
|
| 314 |
+
" <td>1</td>\n",
|
| 315 |
+
" <td>0.5746805204222762335911904727318937</td>\n",
|
| 316 |
+
" <td>...</td>\n",
|
| 317 |
+
" <td>quickstart</td>\n",
|
| 318 |
+
" <td>1725071760</td>\n",
|
| 319 |
+
" <td>False</td>\n",
|
| 320 |
+
" <td>0x00000000000000000000000000000000000000000000...</td>\n",
|
| 321 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5</td>\n",
|
| 322 |
+
" <td>False</td>\n",
|
| 323 |
+
" <td>1724976000</td>\n",
|
| 324 |
+
" <td>[Yes, No]</td>\n",
|
| 325 |
+
" <td>Will the first floating offshore wind research...</td>\n",
|
| 326 |
+
" <td>0x0e940f12f30e928e4879c52d065d9da739a3d3f020d1...</td>\n",
|
| 327 |
+
" </tr>\n",
|
| 328 |
+
" <tr>\n",
|
| 329 |
+
" <th>4</th>\n",
|
| 330 |
+
" <td>100000000000000000</td>\n",
|
| 331 |
+
" <td>0.1000004271262862419547394646567906</td>\n",
|
| 332 |
+
" <td>0xe91d153e0b41518a2ce8dd3d7944fa863463a97d</td>\n",
|
| 333 |
+
" <td>1724771260</td>\n",
|
| 334 |
+
" <td>0x0d049dcaece0ecb6fc81a460da7bcc2a4785d6e5</td>\n",
|
| 335 |
+
" <td>2000000000000000</td>\n",
|
| 336 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f50x0d...</td>\n",
|
| 337 |
+
" <td>0.2713968218662319388988681987389408</td>\n",
|
| 338 |
+
" <td>0</td>\n",
|
| 339 |
+
" <td>0.2804586217805511523845593360379658</td>\n",
|
| 340 |
+
" <td>...</td>\n",
|
| 341 |
+
" <td>quickstart</td>\n",
|
| 342 |
+
" <td>1725071760</td>\n",
|
| 343 |
+
" <td>False</td>\n",
|
| 344 |
+
" <td>0x00000000000000000000000000000000000000000000...</td>\n",
|
| 345 |
+
" <td>0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5</td>\n",
|
| 346 |
+
" <td>False</td>\n",
|
| 347 |
+
" <td>1724976000</td>\n",
|
| 348 |
+
" <td>[Yes, No]</td>\n",
|
| 349 |
+
" <td>Will the first floating offshore wind research...</td>\n",
|
| 350 |
+
" <td>0x0e940f12f30e928e4879c52d065d9da739a3d3f020d1...</td>\n",
|
| 351 |
+
" </tr>\n",
|
| 352 |
+
" </tbody>\n",
|
| 353 |
+
"</table>\n",
|
| 354 |
+
"<p>5 rows Γ 24 columns</p>\n",
|
| 355 |
+
"</div>"
|
| 356 |
+
],
|
| 357 |
+
"text/plain": [
|
| 358 |
+
" collateralAmount collateralAmountUSD \\\n",
|
| 359 |
+
"0 450426474650738688 0.4504269694034145716308073094168006 \n",
|
| 360 |
+
"1 610163214546941400 0.6101636232215150135654007337015298 \n",
|
| 361 |
+
"2 789065092332460672 0.7890644120527324071908793822796086 \n",
|
| 362 |
+
"3 1000000000000000000 1.000000605383660329048491794939126 \n",
|
| 363 |
+
"4 100000000000000000 0.1000004271262862419547394646567906 \n",
|
| 364 |
+
"\n",
|
| 365 |
+
" collateralToken creationTimestamp \\\n",
|
| 366 |
+
"0 0xe91d153e0b41518a2ce8dd3d7944fa863463a97d 1724553455 \n",
|
| 367 |
+
"1 0xe91d153e0b41518a2ce8dd3d7944fa863463a97d 1724811940 \n",
|
| 368 |
+
"2 0xe91d153e0b41518a2ce8dd3d7944fa863463a97d 1724815755 \n",
|
| 369 |
+
"3 0xe91d153e0b41518a2ce8dd3d7944fa863463a97d 1724546620 \n",
|
| 370 |
+
"4 0xe91d153e0b41518a2ce8dd3d7944fa863463a97d 1724771260 \n",
|
| 371 |
+
"\n",
|
| 372 |
+
" trader_address feeAmount \\\n",
|
| 373 |
+
"0 0x022b36c50b85b8ae7addfb8a35d76c59d5814834 9008529493014773 \n",
|
| 374 |
+
"1 0x034c4ad84f7ac6638bf19300d5bbe7d9b981e736 12203264290938828 \n",
|
| 375 |
+
"2 0x09e9d42a029e8b0c2df3871709a762117a681d92 15781301846649213 \n",
|
| 376 |
+
"3 0x09e9d42a029e8b0c2df3871709a762117a681d92 20000000000000000 \n",
|
| 377 |
+
"4 0x0d049dcaece0ecb6fc81a460da7bcc2a4785d6e5 2000000000000000 \n",
|
| 378 |
+
"\n",
|
| 379 |
+
" id \\\n",
|
| 380 |
+
"0 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f50x02... \n",
|
| 381 |
+
"1 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f50x03... \n",
|
| 382 |
+
"2 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f50x09... \n",
|
| 383 |
+
"3 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f50x09... \n",
|
| 384 |
+
"4 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f50x0d... \n",
|
| 385 |
+
"\n",
|
| 386 |
+
" oldOutcomeTokenMarginalPrice outcomeIndex \\\n",
|
| 387 |
+
"0 0.592785210609610270634125335572129 1 \n",
|
| 388 |
+
"1 0.842992636523755061934822129394812 1 \n",
|
| 389 |
+
"2 0.7983775743712442891104598770339028 1 \n",
|
| 390 |
+
"3 0.5110745907733438805447072252622708 1 \n",
|
| 391 |
+
"4 0.2713968218662319388988681987389408 0 \n",
|
| 392 |
+
"\n",
|
| 393 |
+
" outcomeTokenMarginalPrice ... market_creator \\\n",
|
| 394 |
+
"0 0.6171295391012242250994586583534301 ... quickstart \n",
|
| 395 |
+
"1 0.8523396372892128845826889719620915 ... quickstart \n",
|
| 396 |
+
"2 0.8152123711444691659642000374025623 ... quickstart \n",
|
| 397 |
+
"3 0.5746805204222762335911904727318937 ... quickstart \n",
|
| 398 |
+
"4 0.2804586217805511523845593360379658 ... quickstart \n",
|
| 399 |
+
"\n",
|
| 400 |
+
" fpmm.answerFinalizedTimestamp fpmm.arbitrationOccurred \\\n",
|
| 401 |
+
"0 1725071760 False \n",
|
| 402 |
+
"1 1725071760 False \n",
|
| 403 |
+
"2 1725071760 False \n",
|
| 404 |
+
"3 1725071760 False \n",
|
| 405 |
+
"4 1725071760 False \n",
|
| 406 |
+
"\n",
|
| 407 |
+
" fpmm.currentAnswer \\\n",
|
| 408 |
+
"0 0x00000000000000000000000000000000000000000000... \n",
|
| 409 |
+
"1 0x00000000000000000000000000000000000000000000... \n",
|
| 410 |
+
"2 0x00000000000000000000000000000000000000000000... \n",
|
| 411 |
+
"3 0x00000000000000000000000000000000000000000000... \n",
|
| 412 |
+
"4 0x00000000000000000000000000000000000000000000... \n",
|
| 413 |
+
"\n",
|
| 414 |
+
" fpmm.id fpmm.isPendingArbitration \\\n",
|
| 415 |
+
"0 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5 False \n",
|
| 416 |
+
"1 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5 False \n",
|
| 417 |
+
"2 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5 False \n",
|
| 418 |
+
"3 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5 False \n",
|
| 419 |
+
"4 0x0017cd58d6a7ee1451388c7d5b1051b4c0a041f5 False \n",
|
| 420 |
+
"\n",
|
| 421 |
+
" fpmm.openingTimestamp fpmm.outcomes \\\n",
|
| 422 |
+
"0 1724976000 [Yes, No] \n",
|
| 423 |
+
"1 1724976000 [Yes, No] \n",
|
| 424 |
+
"2 1724976000 [Yes, No] \n",
|
| 425 |
+
"3 1724976000 [Yes, No] \n",
|
| 426 |
+
"4 1724976000 [Yes, No] \n",
|
| 427 |
+
"\n",
|
| 428 |
+
" fpmm.title \\\n",
|
| 429 |
+
"0 Will the first floating offshore wind research... \n",
|
| 430 |
+
"1 Will the first floating offshore wind research... \n",
|
| 431 |
+
"2 Will the first floating offshore wind research... \n",
|
| 432 |
+
"3 Will the first floating offshore wind research... \n",
|
| 433 |
+
"4 Will the first floating offshore wind research... \n",
|
| 434 |
+
"\n",
|
| 435 |
+
" fpmm.condition.id \n",
|
| 436 |
+
"0 0x0e940f12f30e928e4879c52d065d9da739a3d3f020d1... \n",
|
| 437 |
+
"1 0x0e940f12f30e928e4879c52d065d9da739a3d3f020d1... \n",
|
| 438 |
+
"2 0x0e940f12f30e928e4879c52d065d9da739a3d3f020d1... \n",
|
| 439 |
+
"3 0x0e940f12f30e928e4879c52d065d9da739a3d3f020d1... \n",
|
| 440 |
+
"4 0x0e940f12f30e928e4879c52d065d9da739a3d3f020d1... \n",
|
| 441 |
+
"\n",
|
| 442 |
+
"[5 rows x 24 columns]"
|
| 443 |
+
]
|
| 444 |
+
},
|
| 445 |
+
"execution_count": 7,
|
| 446 |
+
"metadata": {},
|
| 447 |
+
"output_type": "execute_result"
|
| 448 |
+
}
|
| 449 |
+
],
|
| 450 |
+
"source": [
|
| 451 |
+
"trades.head()"
|
| 452 |
+
]
|
| 453 |
+
},
|
| 454 |
+
{
|
| 455 |
+
"cell_type": "code",
|
| 456 |
+
"execution_count": 9,
|
| 457 |
+
"metadata": {},
|
| 458 |
+
"outputs": [
|
| 459 |
+
{
|
| 460 |
+
"name": "stdout",
|
| 461 |
+
"output_type": "stream",
|
| 462 |
+
"text": [
|
| 463 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
| 464 |
+
"RangeIndex: 26835 entries, 0 to 26834\n",
|
| 465 |
+
"Data columns (total 24 columns):\n",
|
| 466 |
+
" # Column Non-Null Count Dtype \n",
|
| 467 |
+
"--- ------ -------------- ----- \n",
|
| 468 |
+
" 0 collateralAmount 26835 non-null object\n",
|
| 469 |
+
" 1 collateralAmountUSD 26835 non-null object\n",
|
| 470 |
+
" 2 collateralToken 26835 non-null object\n",
|
| 471 |
+
" 3 creationTimestamp 26835 non-null object\n",
|
| 472 |
+
" 4 trader_address 26835 non-null object\n",
|
| 473 |
+
" 5 feeAmount 26835 non-null object\n",
|
| 474 |
+
" 6 id 26835 non-null object\n",
|
| 475 |
+
" 7 oldOutcomeTokenMarginalPrice 26835 non-null object\n",
|
| 476 |
+
" 8 outcomeIndex 26835 non-null object\n",
|
| 477 |
+
" 9 outcomeTokenMarginalPrice 26835 non-null object\n",
|
| 478 |
+
" 10 outcomeTokensTraded 26835 non-null object\n",
|
| 479 |
+
" 11 title 26835 non-null object\n",
|
| 480 |
+
" 12 transactionHash 26835 non-null object\n",
|
| 481 |
+
" 13 type 26835 non-null object\n",
|
| 482 |
+
" 14 market_creator 26835 non-null object\n",
|
| 483 |
+
" 15 fpmm.answerFinalizedTimestamp 24829 non-null object\n",
|
| 484 |
+
" 16 fpmm.arbitrationOccurred 26835 non-null bool \n",
|
| 485 |
+
" 17 fpmm.currentAnswer 24829 non-null object\n",
|
| 486 |
+
" 18 fpmm.id 26835 non-null object\n",
|
| 487 |
+
" 19 fpmm.isPendingArbitration 26835 non-null bool \n",
|
| 488 |
+
" 20 fpmm.openingTimestamp 26835 non-null object\n",
|
| 489 |
+
" 21 fpmm.outcomes 26835 non-null object\n",
|
| 490 |
+
" 22 fpmm.title 26835 non-null object\n",
|
| 491 |
+
" 23 fpmm.condition.id 26835 non-null object\n",
|
| 492 |
+
"dtypes: bool(2), object(22)\n",
|
| 493 |
+
"memory usage: 4.6+ MB\n"
|
| 494 |
+
]
|
| 495 |
+
}
|
| 496 |
+
],
|
| 497 |
+
"source": [
|
| 498 |
+
"trades.info()"
|
| 499 |
+
]
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"cell_type": "code",
|
| 503 |
+
"execution_count": 19,
|
| 504 |
+
"metadata": {},
|
| 505 |
+
"outputs": [
|
| 506 |
+
{
|
| 507 |
+
"data": {
|
| 508 |
+
"text/plain": [
|
| 509 |
+
"Index(['collateralAmount', 'collateralAmountUSD', 'collateralToken',\n",
|
| 510 |
+
" 'creationTimestamp', 'trader_address', 'feeAmount', 'id',\n",
|
| 511 |
+
" 'oldOutcomeTokenMarginalPrice', 'outcomeIndex',\n",
|
| 512 |
+
" 'outcomeTokenMarginalPrice', 'outcomeTokensTraded', 'title',\n",
|
| 513 |
+
" 'transactionHash', 'type', 'market_creator',\n",
|
| 514 |
+
" 'fpmm.answerFinalizedTimestamp', 'fpmm.arbitrationOccurred',\n",
|
| 515 |
+
" 'fpmm.currentAnswer', 'fpmm.id', 'fpmm.isPendingArbitration',\n",
|
| 516 |
+
" 'fpmm.openingTimestamp', 'fpmm.outcomes', 'fpmm.title',\n",
|
| 517 |
+
" 'fpmm.condition.id'],\n",
|
| 518 |
+
" dtype='object')"
|
| 519 |
+
]
|
| 520 |
+
},
|
| 521 |
+
"execution_count": 19,
|
| 522 |
+
"metadata": {},
|
| 523 |
+
"output_type": "execute_result"
|
| 524 |
+
}
|
| 525 |
+
],
|
| 526 |
+
"source": [
|
| 527 |
+
"trades.columns"
|
| 528 |
+
]
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"cell_type": "code",
|
| 532 |
+
"execution_count": 11,
|
| 533 |
+
"metadata": {},
|
| 534 |
+
"outputs": [],
|
| 535 |
+
"source": [
|
| 536 |
+
"markets = list(trades[\"fpmm.id\"].unique())"
|
| 537 |
+
]
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"cell_type": "code",
|
| 541 |
+
"execution_count": 12,
|
| 542 |
+
"metadata": {},
|
| 543 |
+
"outputs": [
|
| 544 |
+
{
|
| 545 |
+
"data": {
|
| 546 |
+
"text/plain": [
|
| 547 |
+
"803"
|
| 548 |
+
]
|
| 549 |
+
},
|
| 550 |
+
"execution_count": 12,
|
| 551 |
+
"metadata": {},
|
| 552 |
+
"output_type": "execute_result"
|
| 553 |
+
}
|
| 554 |
+
],
|
| 555 |
+
"source": [
|
| 556 |
+
"len(markets)"
|
| 557 |
+
]
|
| 558 |
+
},
|
| 559 |
+
{
|
| 560 |
+
"cell_type": "code",
|
| 561 |
+
"execution_count": 50,
|
| 562 |
+
"metadata": {},
|
| 563 |
+
"outputs": [
|
| 564 |
+
{
|
| 565 |
+
"name": "stderr",
|
| 566 |
+
"output_type": "stream",
|
| 567 |
+
"text": [
|
| 568 |
+
"/var/folders/gp/02mb1d514ng739czlxw1lhh00000gn/T/ipykernel_3094/2495807215.py:12: SettingWithCopyWarning: \n",
|
| 569 |
+
"A value is trying to be set on a copy of a slice from a DataFrame\n",
|
| 570 |
+
"\n",
|
| 571 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
| 572 |
+
" trade_markets.rename(\n"
|
| 573 |
+
]
|
| 574 |
+
}
|
| 575 |
+
],
|
| 576 |
+
"source": [
|
| 577 |
+
"from datetime import datetime\n",
|
| 578 |
+
"INVALID_ANSWER_HEX = (\n",
|
| 579 |
+
" \"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\"\n",
|
| 580 |
+
")\n",
|
| 581 |
+
"columns_of_interest = [\n",
|
| 582 |
+
" \"fpmm.currentAnswer\",\n",
|
| 583 |
+
" \"fpmm.id\",\n",
|
| 584 |
+
" \"fpmm.openingTimestamp\",\n",
|
| 585 |
+
" \"market_creator\",\n",
|
| 586 |
+
" ]\n",
|
| 587 |
+
"trade_markets = trades[columns_of_interest]\n",
|
| 588 |
+
"trade_markets.rename(\n",
|
| 589 |
+
" columns={\n",
|
| 590 |
+
" \"fpmm.currentAnswer\": \"currentAnswer\",\n",
|
| 591 |
+
" \"fpmm.openingTimestamp\": \"openingTimestamp\",\n",
|
| 592 |
+
" \"fpmm.id\": \"id\",\n",
|
| 593 |
+
" },\n",
|
| 594 |
+
" inplace=True,\n",
|
| 595 |
+
")\n",
|
| 596 |
+
"trade_markets = trade_markets.drop_duplicates(subset=['id'], keep='last')\n",
|
| 597 |
+
"# remove invalid answers\n",
|
| 598 |
+
"\n",
|
| 599 |
+
"trade_markets = trade_markets.loc[trade_markets[\"currentAnswer\"]!= INVALID_ANSWER_HEX]\n",
|
| 600 |
+
"trade_markets[\"currentAnswer\"] = trade_markets[\"currentAnswer\"].apply(\n",
|
| 601 |
+
" lambda x: convert_hex_to_int(x)\n",
|
| 602 |
+
")\n",
|
| 603 |
+
"trade_markets[\"opening_datetime\"] = trade_markets[\"openingTimestamp\"].apply(\n",
|
| 604 |
+
" lambda x: datetime.fromtimestamp(int(x))\n",
|
| 605 |
+
")\n",
|
| 606 |
+
"trade_markets = trade_markets.sort_values(by=\"opening_datetime\", ascending=True)"
|
| 607 |
+
]
|
| 608 |
+
},
|
| 609 |
+
{
|
| 610 |
+
"cell_type": "code",
|
| 611 |
+
"execution_count": 63,
|
| 612 |
+
"metadata": {},
|
| 613 |
+
"outputs": [
|
| 614 |
+
{
|
| 615 |
+
"data": {
|
| 616 |
+
"text/plain": [
|
| 617 |
+
"648"
|
| 618 |
+
]
|
| 619 |
+
},
|
| 620 |
+
"execution_count": 63,
|
| 621 |
+
"metadata": {},
|
| 622 |
+
"output_type": "execute_result"
|
| 623 |
+
}
|
| 624 |
+
],
|
| 625 |
+
"source": [
|
| 626 |
+
"len(trade_markets.id.unique())"
|
| 627 |
+
]
|
| 628 |
+
},
|
| 629 |
+
{
|
| 630 |
+
"cell_type": "code",
|
| 631 |
+
"execution_count": 64,
|
| 632 |
+
"metadata": {},
|
| 633 |
+
"outputs": [
|
| 634 |
+
{
|
| 635 |
+
"data": {
|
| 636 |
+
"text/plain": [
|
| 637 |
+
"648"
|
| 638 |
+
]
|
| 639 |
+
},
|
| 640 |
+
"execution_count": 64,
|
| 641 |
+
"metadata": {},
|
| 642 |
+
"output_type": "execute_result"
|
| 643 |
+
}
|
| 644 |
+
],
|
| 645 |
+
"source": [
|
| 646 |
+
"len(trade_markets)"
|
| 647 |
+
]
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"cell_type": "code",
|
| 651 |
+
"execution_count": 52,
|
| 652 |
+
"metadata": {},
|
| 653 |
+
"outputs": [
|
| 654 |
+
{
|
| 655 |
+
"data": {
|
| 656 |
+
"text/html": [
|
| 657 |
+
"<div>\n",
|
| 658 |
+
"<style scoped>\n",
|
| 659 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 660 |
+
" vertical-align: middle;\n",
|
| 661 |
+
" }\n",
|
| 662 |
+
"\n",
|
| 663 |
+
" .dataframe tbody tr th {\n",
|
| 664 |
+
" vertical-align: top;\n",
|
| 665 |
+
" }\n",
|
| 666 |
+
"\n",
|
| 667 |
+
" .dataframe thead th {\n",
|
| 668 |
+
" text-align: right;\n",
|
| 669 |
+
" }\n",
|
| 670 |
+
"</style>\n",
|
| 671 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 672 |
+
" <thead>\n",
|
| 673 |
+
" <tr style=\"text-align: right;\">\n",
|
| 674 |
+
" <th></th>\n",
|
| 675 |
+
" <th>currentAnswer</th>\n",
|
| 676 |
+
" <th>id</th>\n",
|
| 677 |
+
" <th>openingTimestamp</th>\n",
|
| 678 |
+
" <th>market_creator</th>\n",
|
| 679 |
+
" <th>opening_datetime</th>\n",
|
| 680 |
+
" </tr>\n",
|
| 681 |
+
" </thead>\n",
|
| 682 |
+
" <tbody>\n",
|
| 683 |
+
" <tr>\n",
|
| 684 |
+
" <th>15736</th>\n",
|
| 685 |
+
" <td>NaN</td>\n",
|
| 686 |
+
" <td>0x92ed80e541f642b564f992245abe640282dd273c</td>\n",
|
| 687 |
+
" <td>1727568000</td>\n",
|
| 688 |
+
" <td>quickstart</td>\n",
|
| 689 |
+
" <td>2024-09-29 02:00:00</td>\n",
|
| 690 |
+
" </tr>\n",
|
| 691 |
+
" <tr>\n",
|
| 692 |
+
" <th>6272</th>\n",
|
| 693 |
+
" <td>NaN</td>\n",
|
| 694 |
+
" <td>0x4002481fe7bc39c1baa4b5988c038da13ed05832</td>\n",
|
| 695 |
+
" <td>1727568000</td>\n",
|
| 696 |
+
" <td>quickstart</td>\n",
|
| 697 |
+
" <td>2024-09-29 02:00:00</td>\n",
|
| 698 |
+
" </tr>\n",
|
| 699 |
+
" <tr>\n",
|
| 700 |
+
" <th>24383</th>\n",
|
| 701 |
+
" <td>NaN</td>\n",
|
| 702 |
+
" <td>0xf820d06509027c309b00cd386055982d9bea0c10</td>\n",
|
| 703 |
+
" <td>1727568000</td>\n",
|
| 704 |
+
" <td>quickstart</td>\n",
|
| 705 |
+
" <td>2024-09-29 02:00:00</td>\n",
|
| 706 |
+
" </tr>\n",
|
| 707 |
+
" <tr>\n",
|
| 708 |
+
" <th>12418</th>\n",
|
| 709 |
+
" <td>NaN</td>\n",
|
| 710 |
+
" <td>0x74e0fa941341ebe980fbdcfa8b40244cb448eb56</td>\n",
|
| 711 |
+
" <td>1727568000</td>\n",
|
| 712 |
+
" <td>quickstart</td>\n",
|
| 713 |
+
" <td>2024-09-29 02:00:00</td>\n",
|
| 714 |
+
" </tr>\n",
|
| 715 |
+
" <tr>\n",
|
| 716 |
+
" <th>4754</th>\n",
|
| 717 |
+
" <td>NaN</td>\n",
|
| 718 |
+
" <td>0x2f44e179b5cc964e504046bac31d6945a0652af2</td>\n",
|
| 719 |
+
" <td>1727568000</td>\n",
|
| 720 |
+
" <td>quickstart</td>\n",
|
| 721 |
+
" <td>2024-09-29 02:00:00</td>\n",
|
| 722 |
+
" </tr>\n",
|
| 723 |
+
" </tbody>\n",
|
| 724 |
+
"</table>\n",
|
| 725 |
+
"</div>"
|
| 726 |
+
],
|
| 727 |
+
"text/plain": [
|
| 728 |
+
" currentAnswer id \\\n",
|
| 729 |
+
"15736 NaN 0x92ed80e541f642b564f992245abe640282dd273c \n",
|
| 730 |
+
"6272 NaN 0x4002481fe7bc39c1baa4b5988c038da13ed05832 \n",
|
| 731 |
+
"24383 NaN 0xf820d06509027c309b00cd386055982d9bea0c10 \n",
|
| 732 |
+
"12418 NaN 0x74e0fa941341ebe980fbdcfa8b40244cb448eb56 \n",
|
| 733 |
+
"4754 NaN 0x2f44e179b5cc964e504046bac31d6945a0652af2 \n",
|
| 734 |
+
"\n",
|
| 735 |
+
" openingTimestamp market_creator opening_datetime \n",
|
| 736 |
+
"15736 1727568000 quickstart 2024-09-29 02:00:00 \n",
|
| 737 |
+
"6272 1727568000 quickstart 2024-09-29 02:00:00 \n",
|
| 738 |
+
"24383 1727568000 quickstart 2024-09-29 02:00:00 \n",
|
| 739 |
+
"12418 1727568000 quickstart 2024-09-29 02:00:00 \n",
|
| 740 |
+
"4754 1727568000 quickstart 2024-09-29 02:00:00 "
|
| 741 |
+
]
|
| 742 |
+
},
|
| 743 |
+
"execution_count": 52,
|
| 744 |
+
"metadata": {},
|
| 745 |
+
"output_type": "execute_result"
|
| 746 |
+
}
|
| 747 |
+
],
|
| 748 |
+
"source": [
|
| 749 |
+
"trade_markets.tail()"
|
| 750 |
+
]
|
| 751 |
+
},
|
| 752 |
+
{
|
| 753 |
+
"cell_type": "code",
|
| 754 |
+
"execution_count": 53,
|
| 755 |
+
"metadata": {},
|
| 756 |
+
"outputs": [
|
| 757 |
+
{
|
| 758 |
+
"data": {
|
| 759 |
+
"text/plain": [
|
| 760 |
+
"719"
|
| 761 |
+
]
|
| 762 |
+
},
|
| 763 |
+
"execution_count": 53,
|
| 764 |
+
"metadata": {},
|
| 765 |
+
"output_type": "execute_result"
|
| 766 |
+
}
|
| 767 |
+
],
|
| 768 |
+
"source": [
|
| 769 |
+
"len(trade_markets)"
|
| 770 |
+
]
|
| 771 |
+
},
|
| 772 |
+
{
|
| 773 |
+
"cell_type": "code",
|
| 774 |
+
"execution_count": 54,
|
| 775 |
+
"metadata": {},
|
| 776 |
+
"outputs": [],
|
| 777 |
+
"source": [
|
| 778 |
+
"trade_markets.dropna(inplace=True)"
|
| 779 |
+
]
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"cell_type": "code",
|
| 783 |
+
"execution_count": 55,
|
| 784 |
+
"metadata": {},
|
| 785 |
+
"outputs": [
|
| 786 |
+
{
|
| 787 |
+
"data": {
|
| 788 |
+
"text/plain": [
|
| 789 |
+
"648"
|
| 790 |
+
]
|
| 791 |
+
},
|
| 792 |
+
"execution_count": 55,
|
| 793 |
+
"metadata": {},
|
| 794 |
+
"output_type": "execute_result"
|
| 795 |
+
}
|
| 796 |
+
],
|
| 797 |
+
"source": [
|
| 798 |
+
"len(trade_markets)"
|
| 799 |
+
]
|
| 800 |
+
},
|
| 801 |
+
{
|
| 802 |
+
"cell_type": "code",
|
| 803 |
+
"execution_count": 56,
|
| 804 |
+
"metadata": {},
|
| 805 |
+
"outputs": [
|
| 806 |
+
{
|
| 807 |
+
"data": {
|
| 808 |
+
"text/html": [
|
| 809 |
+
"<div>\n",
|
| 810 |
+
"<style scoped>\n",
|
| 811 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 812 |
+
" vertical-align: middle;\n",
|
| 813 |
+
" }\n",
|
| 814 |
+
"\n",
|
| 815 |
+
" .dataframe tbody tr th {\n",
|
| 816 |
+
" vertical-align: top;\n",
|
| 817 |
+
" }\n",
|
| 818 |
+
"\n",
|
| 819 |
+
" .dataframe thead th {\n",
|
| 820 |
+
" text-align: right;\n",
|
| 821 |
+
" }\n",
|
| 822 |
+
"</style>\n",
|
| 823 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 824 |
+
" <thead>\n",
|
| 825 |
+
" <tr style=\"text-align: right;\">\n",
|
| 826 |
+
" <th></th>\n",
|
| 827 |
+
" <th>currentAnswer</th>\n",
|
| 828 |
+
" <th>id</th>\n",
|
| 829 |
+
" <th>openingTimestamp</th>\n",
|
| 830 |
+
" <th>market_creator</th>\n",
|
| 831 |
+
" <th>opening_datetime</th>\n",
|
| 832 |
+
" </tr>\n",
|
| 833 |
+
" </thead>\n",
|
| 834 |
+
" <tbody>\n",
|
| 835 |
+
" <tr>\n",
|
| 836 |
+
" <th>20792</th>\n",
|
| 837 |
+
" <td>1.0</td>\n",
|
| 838 |
+
" <td>0xcc9c26a86dd55aa04dcb0066c9b8fca2983f407d</td>\n",
|
| 839 |
+
" <td>1727136000</td>\n",
|
| 840 |
+
" <td>quickstart</td>\n",
|
| 841 |
+
" <td>2024-09-24 02:00:00</td>\n",
|
| 842 |
+
" </tr>\n",
|
| 843 |
+
" <tr>\n",
|
| 844 |
+
" <th>21130</th>\n",
|
| 845 |
+
" <td>1.0</td>\n",
|
| 846 |
+
" <td>0xd1bd18d7601d106639f922f1b5d2eda025c26be7</td>\n",
|
| 847 |
+
" <td>1727136000</td>\n",
|
| 848 |
+
" <td>quickstart</td>\n",
|
| 849 |
+
" <td>2024-09-24 02:00:00</td>\n",
|
| 850 |
+
" </tr>\n",
|
| 851 |
+
" <tr>\n",
|
| 852 |
+
" <th>7494</th>\n",
|
| 853 |
+
" <td>0.0</td>\n",
|
| 854 |
+
" <td>0x4eba0ec2464ec7c746e8872078165c8ad52d346f</td>\n",
|
| 855 |
+
" <td>1727136000</td>\n",
|
| 856 |
+
" <td>quickstart</td>\n",
|
| 857 |
+
" <td>2024-09-24 02:00:00</td>\n",
|
| 858 |
+
" </tr>\n",
|
| 859 |
+
" <tr>\n",
|
| 860 |
+
" <th>9911</th>\n",
|
| 861 |
+
" <td>1.0</td>\n",
|
| 862 |
+
" <td>0x61065f131e2ec851c40765bb0b078a318a36f53e</td>\n",
|
| 863 |
+
" <td>1727136000</td>\n",
|
| 864 |
+
" <td>quickstart</td>\n",
|
| 865 |
+
" <td>2024-09-24 02:00:00</td>\n",
|
| 866 |
+
" </tr>\n",
|
| 867 |
+
" <tr>\n",
|
| 868 |
+
" <th>26182</th>\n",
|
| 869 |
+
" <td>0.0</td>\n",
|
| 870 |
+
" <td>0x7e191324f0efb8aa20b8c702d95e812e55b4179c</td>\n",
|
| 871 |
+
" <td>1727136000</td>\n",
|
| 872 |
+
" <td>pearl</td>\n",
|
| 873 |
+
" <td>2024-09-24 02:00:00</td>\n",
|
| 874 |
+
" </tr>\n",
|
| 875 |
+
" </tbody>\n",
|
| 876 |
+
"</table>\n",
|
| 877 |
+
"</div>"
|
| 878 |
+
],
|
| 879 |
+
"text/plain": [
|
| 880 |
+
" currentAnswer id \\\n",
|
| 881 |
+
"20792 1.0 0xcc9c26a86dd55aa04dcb0066c9b8fca2983f407d \n",
|
| 882 |
+
"21130 1.0 0xd1bd18d7601d106639f922f1b5d2eda025c26be7 \n",
|
| 883 |
+
"7494 0.0 0x4eba0ec2464ec7c746e8872078165c8ad52d346f \n",
|
| 884 |
+
"9911 1.0 0x61065f131e2ec851c40765bb0b078a318a36f53e \n",
|
| 885 |
+
"26182 0.0 0x7e191324f0efb8aa20b8c702d95e812e55b4179c \n",
|
| 886 |
+
"\n",
|
| 887 |
+
" openingTimestamp market_creator opening_datetime \n",
|
| 888 |
+
"20792 1727136000 quickstart 2024-09-24 02:00:00 \n",
|
| 889 |
+
"21130 1727136000 quickstart 2024-09-24 02:00:00 \n",
|
| 890 |
+
"7494 1727136000 quickstart 2024-09-24 02:00:00 \n",
|
| 891 |
+
"9911 1727136000 quickstart 2024-09-24 02:00:00 \n",
|
| 892 |
+
"26182 1727136000 pearl 2024-09-24 02:00:00 "
|
| 893 |
+
]
|
| 894 |
+
},
|
| 895 |
+
"execution_count": 56,
|
| 896 |
+
"metadata": {},
|
| 897 |
+
"output_type": "execute_result"
|
| 898 |
+
}
|
| 899 |
+
],
|
| 900 |
+
"source": [
|
| 901 |
+
"trade_markets.tail()"
|
| 902 |
+
]
|
| 903 |
+
},
|
| 904 |
+
{
|
| 905 |
+
"cell_type": "code",
|
| 906 |
+
"execution_count": 51,
|
| 907 |
+
"metadata": {},
|
| 908 |
+
"outputs": [],
|
| 909 |
+
"source": [
|
| 910 |
+
"import math\n",
|
| 911 |
+
"def market_KL_divergence(market_row: pd.DataFrame) -> float:\n",
|
| 912 |
+
" \"\"\"Function to compute the divergence based on the formula\n",
|
| 913 |
+
" Formula in https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence\"\"\"\n",
|
| 914 |
+
" current_answer = market_row.currentAnswer # \"yes\", \"no\"\n",
|
| 915 |
+
" target_prob = 1 # = 100%\n",
|
| 916 |
+
" if current_answer == \"yes\":\n",
|
| 917 |
+
" candidate_prob = market_row.first_outcome_prob\n",
|
| 918 |
+
" else: # \"no\"\n",
|
| 919 |
+
" candidate_prob = market_row.second_outcome_prob\n",
|
| 920 |
+
"\n",
|
| 921 |
+
" # we have only one sample, the final probability based on tokens\n",
|
| 922 |
+
" kl_divergence = candidate_prob * round(math.log(candidate_prob / target_prob), 4)\n",
|
| 923 |
+
" return kl_divergence"
|
| 924 |
+
]
|
| 925 |
+
},
|
| 926 |
+
{
|
| 927 |
+
"cell_type": "code",
|
| 928 |
+
"execution_count": null,
|
| 929 |
+
"metadata": {},
|
| 930 |
+
"outputs": [],
|
| 931 |
+
"source": []
|
| 932 |
+
},
|
| 933 |
+
{
|
| 934 |
+
"cell_type": "code",
|
| 935 |
+
"execution_count": null,
|
| 936 |
+
"metadata": {},
|
| 937 |
+
"outputs": [],
|
| 938 |
+
"source": []
|
| 939 |
+
},
|
| 940 |
+
{
|
| 941 |
+
"cell_type": "code",
|
| 942 |
+
"execution_count": 36,
|
| 943 |
+
"metadata": {},
|
| 944 |
+
"outputs": [
|
| 945 |
+
{
|
| 946 |
+
"data": {
|
| 947 |
+
"text/plain": [
|
| 948 |
+
"719"
|
| 949 |
+
]
|
| 950 |
+
},
|
| 951 |
+
"execution_count": 36,
|
| 952 |
+
"metadata": {},
|
| 953 |
+
"output_type": "execute_result"
|
| 954 |
+
}
|
| 955 |
+
],
|
| 956 |
+
"source": [
|
| 957 |
+
"len(trade_markets)"
|
| 958 |
+
]
|
| 959 |
+
},
|
| 960 |
+
{
|
| 961 |
+
"cell_type": "code",
|
| 962 |
+
"execution_count": 37,
|
| 963 |
+
"metadata": {},
|
| 964 |
+
"outputs": [
|
| 965 |
+
{
|
| 966 |
+
"data": {
|
| 967 |
+
"text/plain": [
|
| 968 |
+
"719"
|
| 969 |
+
]
|
| 970 |
+
},
|
| 971 |
+
"execution_count": 37,
|
| 972 |
+
"metadata": {},
|
| 973 |
+
"output_type": "execute_result"
|
| 974 |
+
}
|
| 975 |
+
],
|
| 976 |
+
"source": [
|
| 977 |
+
"len(list(trade_markets.id.unique()))"
|
| 978 |
+
]
|
| 979 |
+
},
|
| 980 |
+
{
|
| 981 |
+
"cell_type": "code",
|
| 982 |
+
"execution_count": 38,
|
| 983 |
+
"metadata": {},
|
| 984 |
+
"outputs": [
|
| 985 |
+
{
|
| 986 |
+
"data": {
|
| 987 |
+
"text/plain": [
|
| 988 |
+
"currentAnswer\n",
|
| 989 |
+
"0x0000000000000000000000000000000000000000000000000000000000000001 407\n",
|
| 990 |
+
"0x0000000000000000000000000000000000000000000000000000000000000000 241\n",
|
| 991 |
+
"Name: count, dtype: int64"
|
| 992 |
+
]
|
| 993 |
+
},
|
| 994 |
+
"execution_count": 38,
|
| 995 |
+
"metadata": {},
|
| 996 |
+
"output_type": "execute_result"
|
| 997 |
+
}
|
| 998 |
+
],
|
| 999 |
+
"source": [
|
| 1000 |
+
"trade_markets.currentAnswer.value_counts()"
|
| 1001 |
+
]
|
| 1002 |
+
},
|
| 1003 |
+
{
|
| 1004 |
+
"cell_type": "code",
|
| 1005 |
+
"execution_count": 15,
|
| 1006 |
+
"metadata": {},
|
| 1007 |
+
"outputs": [],
|
| 1008 |
+
"source": [
|
| 1009 |
+
"INVALID_ANSWER_HEX = (\n",
|
| 1010 |
+
" \"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\"\n",
|
| 1011 |
+
")"
|
| 1012 |
+
]
|
| 1013 |
+
},
|
| 1014 |
+
{
|
| 1015 |
+
"cell_type": "code",
|
| 1016 |
+
"execution_count": 40,
|
| 1017 |
+
"metadata": {},
|
| 1018 |
+
"outputs": [],
|
| 1019 |
+
"source": [
|
| 1020 |
+
"import numpy as np\n",
|
| 1021 |
+
"def convert_hex_to_int(x):\n",
|
| 1022 |
+
" \"\"\"Convert hex to int\"\"\"\n",
|
| 1023 |
+
" if isinstance(x, float):\n",
|
| 1024 |
+
" return np.nan\n",
|
| 1025 |
+
" if isinstance(x, str):\n",
|
| 1026 |
+
" if x == INVALID_ANSWER_HEX:\n",
|
| 1027 |
+
" return -1\n",
|
| 1028 |
+
" answer = int(x, 16)\n",
|
| 1029 |
+
" return answer\n",
|
| 1030 |
+
" "
|
| 1031 |
+
]
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"cell_type": "code",
|
| 1035 |
+
"execution_count": null,
|
| 1036 |
+
"metadata": {},
|
| 1037 |
+
"outputs": [],
|
| 1038 |
+
"source": [
|
| 1039 |
+
"market_ids = list(markets.id.unique())\n",
|
| 1040 |
+
"for i in range(len(trade_markets)):\n",
|
| 1041 |
+
" market = trade_markets.iloc[i]\n",
|
| 1042 |
+
" if market.id in market_ids:\n",
|
| 1043 |
+
" current_answer = convert_hex_to_int(market.currentAnswer)\n",
|
| 1044 |
+
" market_answer = markets.loc[markets[\"id\"]==market.id].currentAnswer.values[0]\n",
|
| 1045 |
+
" print(f\"current answer = {current_answer} and market answer {market_answer}\")\n",
|
| 1046 |
+
" trade_markets.at[i, \"currentAnswer\"] = market_answer"
|
| 1047 |
+
]
|
| 1048 |
+
},
|
| 1049 |
+
{
|
| 1050 |
+
"cell_type": "code",
|
| 1051 |
+
"execution_count": 17,
|
| 1052 |
+
"metadata": {},
|
| 1053 |
+
"outputs": [],
|
| 1054 |
+
"source": [
|
| 1055 |
+
"markets[\"currentAnswer\"] = markets[\"currentAnswer\"].apply(lambda x: convert_hex_to_int(x))"
|
| 1056 |
+
]
|
| 1057 |
+
},
|
| 1058 |
+
{
|
| 1059 |
+
"cell_type": "code",
|
| 1060 |
+
"execution_count": 18,
|
| 1061 |
+
"metadata": {},
|
| 1062 |
+
"outputs": [
|
| 1063 |
+
{
|
| 1064 |
+
"data": {
|
| 1065 |
+
"text/plain": [
|
| 1066 |
+
"currentAnswer\n",
|
| 1067 |
+
" 1.0 407\n",
|
| 1068 |
+
" 0.0 241\n",
|
| 1069 |
+
"-1.0 84\n",
|
| 1070 |
+
"Name: count, dtype: int64"
|
| 1071 |
+
]
|
| 1072 |
+
},
|
| 1073 |
+
"execution_count": 18,
|
| 1074 |
+
"metadata": {},
|
| 1075 |
+
"output_type": "execute_result"
|
| 1076 |
+
}
|
| 1077 |
+
],
|
| 1078 |
+
"source": [
|
| 1079 |
+
"markets.currentAnswer.value_counts()"
|
| 1080 |
+
]
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"cell_type": "code",
|
| 1084 |
+
"execution_count": 70,
|
| 1085 |
+
"metadata": {},
|
| 1086 |
+
"outputs": [
|
| 1087 |
+
{
|
| 1088 |
+
"data": {
|
| 1089 |
+
"text/plain": [
|
| 1090 |
+
"0.0769610411361284"
|
| 1091 |
+
]
|
| 1092 |
+
},
|
| 1093 |
+
"execution_count": 70,
|
| 1094 |
+
"metadata": {},
|
| 1095 |
+
"output_type": "execute_result"
|
| 1096 |
+
}
|
| 1097 |
+
],
|
| 1098 |
+
"source": [
|
| 1099 |
+
"import math\n",
|
| 1100 |
+
"\n",
|
| 1101 |
+
"candidate_prob = 9/25\n",
|
| 1102 |
+
"target_prob = 1/3\n",
|
| 1103 |
+
"math.log(candidate_prob/target_prob)"
|
| 1104 |
+
]
|
| 1105 |
+
},
|
| 1106 |
+
{
|
| 1107 |
+
"cell_type": "code",
|
| 1108 |
+
"execution_count": 72,
|
| 1109 |
+
"metadata": {},
|
| 1110 |
+
"outputs": [
|
| 1111 |
+
{
|
| 1112 |
+
"name": "stdout",
|
| 1113 |
+
"output_type": "stream",
|
| 1114 |
+
"text": [
|
| 1115 |
+
"KL divergence: 6.296890976997244\n"
|
| 1116 |
+
]
|
| 1117 |
+
}
|
| 1118 |
+
],
|
| 1119 |
+
"source": [
|
| 1120 |
+
"import numpy as np\n",
|
| 1121 |
+
"\n",
|
| 1122 |
+
"def kl_divergence(p, q):\n",
|
| 1123 |
+
" \"\"\"\n",
|
| 1124 |
+
" Compute KL divergence for a single sample with two probabilities.\n",
|
| 1125 |
+
" \n",
|
| 1126 |
+
" :param p: First probability (true distribution)\n",
|
| 1127 |
+
" :param q: Second probability (approximating distribution)\n",
|
| 1128 |
+
" :return: KL divergence value\n",
|
| 1129 |
+
" \"\"\"\n",
|
| 1130 |
+
" # Ensure probabilities sum to 1\n",
|
| 1131 |
+
" p = np.array([p, 1-p])\n",
|
| 1132 |
+
" q = np.array([q, 1-q])\n",
|
| 1133 |
+
" \n",
|
| 1134 |
+
" # Avoid division by zero\n",
|
| 1135 |
+
" epsilon = 1e-10\n",
|
| 1136 |
+
" q = np.clip(q, epsilon, 1-epsilon)\n",
|
| 1137 |
+
" \n",
|
| 1138 |
+
" # Compute KL divergence\n",
|
| 1139 |
+
" kl_div = np.sum(p * np.log(p / q))\n",
|
| 1140 |
+
" \n",
|
| 1141 |
+
" return kl_div\n",
|
| 1142 |
+
"\n",
|
| 1143 |
+
"# Example usage\n",
|
| 1144 |
+
"p = 0.7 # probability from true distribution\n",
|
| 1145 |
+
"q = 1.0 # probability from approximating distribution\n",
|
| 1146 |
+
"\n",
|
| 1147 |
+
"result = kl_divergence(p, q)\n",
|
| 1148 |
+
"print(f\"KL divergence: {result}\")"
|
| 1149 |
+
]
|
| 1150 |
+
},
|
| 1151 |
+
{
|
| 1152 |
+
"cell_type": "code",
|
| 1153 |
+
"execution_count": 74,
|
| 1154 |
+
"metadata": {},
|
| 1155 |
+
"outputs": [
|
| 1156 |
+
{
|
| 1157 |
+
"name": "stdout",
|
| 1158 |
+
"output_type": "stream",
|
| 1159 |
+
"text": [
|
| 1160 |
+
"KL divergence: inf\n"
|
| 1161 |
+
]
|
| 1162 |
+
}
|
| 1163 |
+
],
|
| 1164 |
+
"source": [
|
| 1165 |
+
"from scipy.special import kl_div\n",
|
| 1166 |
+
"\n",
|
| 1167 |
+
"# For multiple probabilities\n",
|
| 1168 |
+
"p = np.array([0.3, 0.7])\n",
|
| 1169 |
+
"q = np.array([0.0, 1.0])\n",
|
| 1170 |
+
"\n",
|
| 1171 |
+
"kl = np.sum(kl_div(p, q))\n",
|
| 1172 |
+
"print(f\"KL divergence: {kl}\")"
|
| 1173 |
+
]
|
| 1174 |
+
},
|
| 1175 |
+
{
|
| 1176 |
+
"cell_type": "markdown",
|
| 1177 |
+
"metadata": {},
|
| 1178 |
+
"source": [
|
| 1179 |
+
"This library is not useful if we have extreme values"
|
| 1180 |
+
]
|
| 1181 |
+
},
|
| 1182 |
+
{
|
| 1183 |
+
"cell_type": "code",
|
| 1184 |
+
"execution_count": 75,
|
| 1185 |
+
"metadata": {},
|
| 1186 |
+
"outputs": [
|
| 1187 |
+
{
|
| 1188 |
+
"data": {
|
| 1189 |
+
"text/html": [
|
| 1190 |
+
"<div>\n",
|
| 1191 |
+
"<style scoped>\n",
|
| 1192 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 1193 |
+
" vertical-align: middle;\n",
|
| 1194 |
+
" }\n",
|
| 1195 |
+
"\n",
|
| 1196 |
+
" .dataframe tbody tr th {\n",
|
| 1197 |
+
" vertical-align: top;\n",
|
| 1198 |
+
" }\n",
|
| 1199 |
+
"\n",
|
| 1200 |
+
" .dataframe thead th {\n",
|
| 1201 |
+
" text-align: right;\n",
|
| 1202 |
+
" }\n",
|
| 1203 |
+
"</style>\n",
|
| 1204 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 1205 |
+
" <thead>\n",
|
| 1206 |
+
" <tr style=\"text-align: right;\">\n",
|
| 1207 |
+
" <th></th>\n",
|
| 1208 |
+
" <th>currentAnswer</th>\n",
|
| 1209 |
+
" <th>id</th>\n",
|
| 1210 |
+
" <th>openingTimestamp</th>\n",
|
| 1211 |
+
" <th>market_creator</th>\n",
|
| 1212 |
+
" <th>opening_datetime</th>\n",
|
| 1213 |
+
" <th>first_outcome_prob</th>\n",
|
| 1214 |
+
" <th>second_outcome_prob</th>\n",
|
| 1215 |
+
" <th>kl_divergence</th>\n",
|
| 1216 |
+
" </tr>\n",
|
| 1217 |
+
" </thead>\n",
|
| 1218 |
+
" <tbody>\n",
|
| 1219 |
+
" <tr>\n",
|
| 1220 |
+
" <th>0</th>\n",
|
| 1221 |
+
" <td>yes</td>\n",
|
| 1222 |
+
" <td>0x67490193504b49a247d6a3ba7d441e9894d9615f</td>\n",
|
| 1223 |
+
" <td>1722470400</td>\n",
|
| 1224 |
+
" <td>quickstart</td>\n",
|
| 1225 |
+
" <td>2024-08-01 02:00:00</td>\n",
|
| 1226 |
+
" <td>0.8145</td>\n",
|
| 1227 |
+
" <td>0.1855</td>\n",
|
| 1228 |
+
" <td>3.791664</td>\n",
|
| 1229 |
+
" </tr>\n",
|
| 1230 |
+
" <tr>\n",
|
| 1231 |
+
" <th>1</th>\n",
|
| 1232 |
+
" <td>no</td>\n",
|
| 1233 |
+
" <td>0x17f2c97bf52a79671878201bf2995a3b6daba041</td>\n",
|
| 1234 |
+
" <td>1722470400</td>\n",
|
| 1235 |
+
" <td>quickstart</td>\n",
|
| 1236 |
+
" <td>2024-08-01 02:00:00</td>\n",
|
| 1237 |
+
" <td>0.1975</td>\n",
|
| 1238 |
+
" <td>0.8025</td>\n",
|
| 1239 |
+
" <td>4.050688</td>\n",
|
| 1240 |
+
" </tr>\n",
|
| 1241 |
+
" <tr>\n",
|
| 1242 |
+
" <th>2</th>\n",
|
| 1243 |
+
" <td>no</td>\n",
|
| 1244 |
+
" <td>0xbca6aa704a02a5c5a766ff829dacc81aee5547cf</td>\n",
|
| 1245 |
+
" <td>1722470400</td>\n",
|
| 1246 |
+
" <td>quickstart</td>\n",
|
| 1247 |
+
" <td>2024-08-01 02:00:00</td>\n",
|
| 1248 |
+
" <td>0.6969</td>\n",
|
| 1249 |
+
" <td>0.3031</td>\n",
|
| 1250 |
+
" <td>15.433247</td>\n",
|
| 1251 |
+
" </tr>\n",
|
| 1252 |
+
" <tr>\n",
|
| 1253 |
+
" <th>3</th>\n",
|
| 1254 |
+
" <td>no</td>\n",
|
| 1255 |
+
" <td>0x221c71bab604691b0b8805c1c433fc8e22123a67</td>\n",
|
| 1256 |
+
" <td>1722470400</td>\n",
|
| 1257 |
+
" <td>pearl</td>\n",
|
| 1258 |
+
" <td>2024-08-01 02:00:00</td>\n",
|
| 1259 |
+
" <td>0.4757</td>\n",
|
| 1260 |
+
" <td>0.5243</td>\n",
|
| 1261 |
+
" <td>10.261432</td>\n",
|
| 1262 |
+
" </tr>\n",
|
| 1263 |
+
" <tr>\n",
|
| 1264 |
+
" <th>4</th>\n",
|
| 1265 |
+
" <td>no</td>\n",
|
| 1266 |
+
" <td>0xe4d078b9be12319c0063f58dc10f19604a5df163</td>\n",
|
| 1267 |
+
" <td>1722470400</td>\n",
|
| 1268 |
+
" <td>quickstart</td>\n",
|
| 1269 |
+
" <td>2024-08-01 02:00:00</td>\n",
|
| 1270 |
+
" <td>0.3473</td>\n",
|
| 1271 |
+
" <td>0.6527</td>\n",
|
| 1272 |
+
" <td>7.351119</td>\n",
|
| 1273 |
+
" </tr>\n",
|
| 1274 |
+
" </tbody>\n",
|
| 1275 |
+
"</table>\n",
|
| 1276 |
+
"</div>"
|
| 1277 |
+
],
|
| 1278 |
+
"text/plain": [
|
| 1279 |
+
" currentAnswer id openingTimestamp \\\n",
|
| 1280 |
+
"0 yes 0x67490193504b49a247d6a3ba7d441e9894d9615f 1722470400 \n",
|
| 1281 |
+
"1 no 0x17f2c97bf52a79671878201bf2995a3b6daba041 1722470400 \n",
|
| 1282 |
+
"2 no 0xbca6aa704a02a5c5a766ff829dacc81aee5547cf 1722470400 \n",
|
| 1283 |
+
"3 no 0x221c71bab604691b0b8805c1c433fc8e22123a67 1722470400 \n",
|
| 1284 |
+
"4 no 0xe4d078b9be12319c0063f58dc10f19604a5df163 1722470400 \n",
|
| 1285 |
+
"\n",
|
| 1286 |
+
" market_creator opening_datetime first_outcome_prob second_outcome_prob \\\n",
|
| 1287 |
+
"0 quickstart 2024-08-01 02:00:00 0.8145 0.1855 \n",
|
| 1288 |
+
"1 quickstart 2024-08-01 02:00:00 0.1975 0.8025 \n",
|
| 1289 |
+
"2 quickstart 2024-08-01 02:00:00 0.6969 0.3031 \n",
|
| 1290 |
+
"3 pearl 2024-08-01 02:00:00 0.4757 0.5243 \n",
|
| 1291 |
+
"4 quickstart 2024-08-01 02:00:00 0.3473 0.6527 \n",
|
| 1292 |
+
"\n",
|
| 1293 |
+
" kl_divergence \n",
|
| 1294 |
+
"0 3.791664 \n",
|
| 1295 |
+
"1 4.050688 \n",
|
| 1296 |
+
"2 15.433247 \n",
|
| 1297 |
+
"3 10.261432 \n",
|
| 1298 |
+
"4 7.351119 "
|
| 1299 |
+
]
|
| 1300 |
+
},
|
| 1301 |
+
"execution_count": 75,
|
| 1302 |
+
"metadata": {},
|
| 1303 |
+
"output_type": "execute_result"
|
| 1304 |
+
}
|
| 1305 |
+
],
|
| 1306 |
+
"source": [
|
| 1307 |
+
"markets_div = pd.read_parquet(\"../data/closed_markets_div.parquet\")\n",
|
| 1308 |
+
"markets_div.head()"
|
| 1309 |
+
]
|
| 1310 |
+
},
|
| 1311 |
+
{
|
| 1312 |
+
"cell_type": "code",
|
| 1313 |
+
"execution_count": 76,
|
| 1314 |
+
"metadata": {},
|
| 1315 |
+
"outputs": [
|
| 1316 |
+
{
|
| 1317 |
+
"data": {
|
| 1318 |
+
"text/html": [
|
| 1319 |
+
"<div>\n",
|
| 1320 |
+
"<style scoped>\n",
|
| 1321 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 1322 |
+
" vertical-align: middle;\n",
|
| 1323 |
+
" }\n",
|
| 1324 |
+
"\n",
|
| 1325 |
+
" .dataframe tbody tr th {\n",
|
| 1326 |
+
" vertical-align: top;\n",
|
| 1327 |
+
" }\n",
|
| 1328 |
+
"\n",
|
| 1329 |
+
" .dataframe thead th {\n",
|
| 1330 |
+
" text-align: right;\n",
|
| 1331 |
+
" }\n",
|
| 1332 |
+
"</style>\n",
|
| 1333 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 1334 |
+
" <thead>\n",
|
| 1335 |
+
" <tr style=\"text-align: right;\">\n",
|
| 1336 |
+
" <th></th>\n",
|
| 1337 |
+
" <th>currentAnswer</th>\n",
|
| 1338 |
+
" <th>id</th>\n",
|
| 1339 |
+
" <th>openingTimestamp</th>\n",
|
| 1340 |
+
" <th>market_creator</th>\n",
|
| 1341 |
+
" <th>opening_datetime</th>\n",
|
| 1342 |
+
" <th>first_outcome_prob</th>\n",
|
| 1343 |
+
" <th>second_outcome_prob</th>\n",
|
| 1344 |
+
" <th>kl_divergence</th>\n",
|
| 1345 |
+
" </tr>\n",
|
| 1346 |
+
" </thead>\n",
|
| 1347 |
+
" <tbody>\n",
|
| 1348 |
+
" <tr>\n",
|
| 1349 |
+
" <th>642</th>\n",
|
| 1350 |
+
" <td>yes</td>\n",
|
| 1351 |
+
" <td>0x4eba0ec2464ec7c746e8872078165c8ad52d346f</td>\n",
|
| 1352 |
+
" <td>1727136000</td>\n",
|
| 1353 |
+
" <td>quickstart</td>\n",
|
| 1354 |
+
" <td>2024-09-24 02:00:00</td>\n",
|
| 1355 |
+
" <td>0.5392</td>\n",
|
| 1356 |
+
" <td>0.4608</td>\n",
|
| 1357 |
+
" <td>9.920241</td>\n",
|
| 1358 |
+
" </tr>\n",
|
| 1359 |
+
" <tr>\n",
|
| 1360 |
+
" <th>643</th>\n",
|
| 1361 |
+
" <td>no</td>\n",
|
| 1362 |
+
" <td>0x3535b4cea3ea7b1862fbe1af5a458702cc1c0dad</td>\n",
|
| 1363 |
+
" <td>1727136000</td>\n",
|
| 1364 |
+
" <td>quickstart</td>\n",
|
| 1365 |
+
" <td>2024-09-24 02:00:00</td>\n",
|
| 1366 |
+
" <td>0.2812</td>\n",
|
| 1367 |
+
" <td>0.7188</td>\n",
|
| 1368 |
+
" <td>5.880786</td>\n",
|
| 1369 |
+
" </tr>\n",
|
| 1370 |
+
" <tr>\n",
|
| 1371 |
+
" <th>644</th>\n",
|
| 1372 |
+
" <td>yes</td>\n",
|
| 1373 |
+
" <td>0x7e191324f0efb8aa20b8c702d95e812e55b4179c</td>\n",
|
| 1374 |
+
" <td>1727136000</td>\n",
|
| 1375 |
+
" <td>pearl</td>\n",
|
| 1376 |
+
" <td>2024-09-24 02:00:00</td>\n",
|
| 1377 |
+
" <td>0.5000</td>\n",
|
| 1378 |
+
" <td>0.5000</td>\n",
|
| 1379 |
+
" <td>10.819778</td>\n",
|
| 1380 |
+
" </tr>\n",
|
| 1381 |
+
" <tr>\n",
|
| 1382 |
+
" <th>645</th>\n",
|
| 1383 |
+
" <td>no</td>\n",
|
| 1384 |
+
" <td>0xd1bd18d7601d106639f922f1b5d2eda025c26be7</td>\n",
|
| 1385 |
+
" <td>1727136000</td>\n",
|
| 1386 |
+
" <td>quickstart</td>\n",
|
| 1387 |
+
" <td>2024-09-24 02:00:00</td>\n",
|
| 1388 |
+
" <td>0.5000</td>\n",
|
| 1389 |
+
" <td>0.5000</td>\n",
|
| 1390 |
+
" <td>10.819778</td>\n",
|
| 1391 |
+
" </tr>\n",
|
| 1392 |
+
" <tr>\n",
|
| 1393 |
+
" <th>646</th>\n",
|
| 1394 |
+
" <td>no</td>\n",
|
| 1395 |
+
" <td>0x61065f131e2ec851c40765bb0b078a318a36f53e</td>\n",
|
| 1396 |
+
" <td>1727136000</td>\n",
|
| 1397 |
+
" <td>quickstart</td>\n",
|
| 1398 |
+
" <td>2024-09-24 02:00:00</td>\n",
|
| 1399 |
+
" <td>0.5000</td>\n",
|
| 1400 |
+
" <td>0.5000</td>\n",
|
| 1401 |
+
" <td>10.819778</td>\n",
|
| 1402 |
+
" </tr>\n",
|
| 1403 |
+
" </tbody>\n",
|
| 1404 |
+
"</table>\n",
|
| 1405 |
+
"</div>"
|
| 1406 |
+
],
|
| 1407 |
+
"text/plain": [
|
| 1408 |
+
" currentAnswer id \\\n",
|
| 1409 |
+
"642 yes 0x4eba0ec2464ec7c746e8872078165c8ad52d346f \n",
|
| 1410 |
+
"643 no 0x3535b4cea3ea7b1862fbe1af5a458702cc1c0dad \n",
|
| 1411 |
+
"644 yes 0x7e191324f0efb8aa20b8c702d95e812e55b4179c \n",
|
| 1412 |
+
"645 no 0xd1bd18d7601d106639f922f1b5d2eda025c26be7 \n",
|
| 1413 |
+
"646 no 0x61065f131e2ec851c40765bb0b078a318a36f53e \n",
|
| 1414 |
+
"\n",
|
| 1415 |
+
" openingTimestamp market_creator opening_datetime first_outcome_prob \\\n",
|
| 1416 |
+
"642 1727136000 quickstart 2024-09-24 02:00:00 0.5392 \n",
|
| 1417 |
+
"643 1727136000 quickstart 2024-09-24 02:00:00 0.2812 \n",
|
| 1418 |
+
"644 1727136000 pearl 2024-09-24 02:00:00 0.5000 \n",
|
| 1419 |
+
"645 1727136000 quickstart 2024-09-24 02:00:00 0.5000 \n",
|
| 1420 |
+
"646 1727136000 quickstart 2024-09-24 02:00:00 0.5000 \n",
|
| 1421 |
+
"\n",
|
| 1422 |
+
" second_outcome_prob kl_divergence \n",
|
| 1423 |
+
"642 0.4608 9.920241 \n",
|
| 1424 |
+
"643 0.7188 5.880786 \n",
|
| 1425 |
+
"644 0.5000 10.819778 \n",
|
| 1426 |
+
"645 0.5000 10.819778 \n",
|
| 1427 |
+
"646 0.5000 10.819778 "
|
| 1428 |
+
]
|
| 1429 |
+
},
|
| 1430 |
+
"execution_count": 76,
|
| 1431 |
+
"metadata": {},
|
| 1432 |
+
"output_type": "execute_result"
|
| 1433 |
+
}
|
| 1434 |
+
],
|
| 1435 |
+
"source": [
|
| 1436 |
+
"markets_div.tail()"
|
| 1437 |
+
]
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"cell_type": "code",
|
| 1441 |
+
"execution_count": 77,
|
| 1442 |
+
"metadata": {},
|
| 1443 |
+
"outputs": [
|
| 1444 |
+
{
|
| 1445 |
+
"data": {
|
| 1446 |
+
"text/plain": [
|
| 1447 |
+
"647"
|
| 1448 |
+
]
|
| 1449 |
+
},
|
| 1450 |
+
"execution_count": 77,
|
| 1451 |
+
"metadata": {},
|
| 1452 |
+
"output_type": "execute_result"
|
| 1453 |
+
}
|
| 1454 |
+
],
|
| 1455 |
+
"source": [
|
| 1456 |
+
"len(markets_div)"
|
| 1457 |
+
]
|
| 1458 |
+
}
|
| 1459 |
+
],
|
| 1460 |
+
"metadata": {
|
| 1461 |
+
"kernelspec": {
|
| 1462 |
+
"display_name": "hf_dashboards",
|
| 1463 |
+
"language": "python",
|
| 1464 |
+
"name": "python3"
|
| 1465 |
+
},
|
| 1466 |
+
"language_info": {
|
| 1467 |
+
"codemirror_mode": {
|
| 1468 |
+
"name": "ipython",
|
| 1469 |
+
"version": 3
|
| 1470 |
+
},
|
| 1471 |
+
"file_extension": ".py",
|
| 1472 |
+
"mimetype": "text/x-python",
|
| 1473 |
+
"name": "python",
|
| 1474 |
+
"nbconvert_exporter": "python",
|
| 1475 |
+
"pygments_lexer": "ipython3",
|
| 1476 |
+
"version": "3.12.2"
|
| 1477 |
+
}
|
| 1478 |
+
},
|
| 1479 |
+
"nbformat": 4,
|
| 1480 |
+
"nbformat_minor": 2
|
| 1481 |
+
}
|
scripts/closed_markets_divergence.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
import os
|
| 3 |
+
import math
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
from typing import Any, Union
|
| 7 |
+
from string import Template
|
| 8 |
+
import requests
|
| 9 |
+
import pickle
|
| 10 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
import time
|
| 13 |
+
from datetime import datetime
|
| 14 |
+
|
| 15 |
+
NUM_WORKERS = 10
|
| 16 |
+
IPFS_POLL_INTERVAL = 0.07
|
| 17 |
+
INVALID_ANSWER_HEX = (
|
| 18 |
+
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
|
| 19 |
+
)
|
| 20 |
+
INVALID_ANSWER = -1
|
| 21 |
+
SCRIPTS_DIR = Path(__file__).parent
|
| 22 |
+
ROOT_DIR = SCRIPTS_DIR.parent
|
| 23 |
+
DATA_DIR = ROOT_DIR / "data"
|
| 24 |
+
SUBGRAPH_API_KEY = os.environ.get("SUBGRAPH_API_KEY", None)
|
| 25 |
+
OMEN_SUBGRAPH_URL = Template(
|
| 26 |
+
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
|
| 27 |
+
)
|
| 28 |
+
get_token_amounts_query = Template(
|
| 29 |
+
"""
|
| 30 |
+
{
|
| 31 |
+
|
| 32 |
+
fpmmLiquidities(
|
| 33 |
+
where: {
|
| 34 |
+
fpmm_: {
|
| 35 |
+
creator: "${fpmm_creator}",
|
| 36 |
+
id: "${fpmm_id}",
|
| 37 |
+
},
|
| 38 |
+
id_gt: ""
|
| 39 |
+
}
|
| 40 |
+
orderBy: creationTimestamp
|
| 41 |
+
orderDirection: asc
|
| 42 |
+
)
|
| 43 |
+
{
|
| 44 |
+
id
|
| 45 |
+
outcomeTokenAmounts
|
| 46 |
+
creationTimestamp
|
| 47 |
+
additionalLiquidityParameter
|
| 48 |
+
}
|
| 49 |
+
}
|
| 50 |
+
"""
|
| 51 |
+
)
|
| 52 |
+
CREATOR = "0x89c5cc945dd550BcFfb72Fe42BfF002429F46Fec"
|
| 53 |
+
PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557"
|
| 54 |
+
market_creators_map = {"quickstart": CREATOR, "pearl": PEARL_CREATOR}
|
| 55 |
+
headers = {
|
| 56 |
+
"Accept": "application/json, multipart/mixed",
|
| 57 |
+
"Content-Type": "application/json",
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def _to_content(q: str) -> dict[str, Any]:
|
| 62 |
+
"""Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes."""
|
| 63 |
+
finalized_query = {
|
| 64 |
+
"query": q,
|
| 65 |
+
"variables": None,
|
| 66 |
+
"extensions": {"headers": None},
|
| 67 |
+
}
|
| 68 |
+
return finalized_query
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def collect_liquidity_info(
|
| 72 |
+
index: int, fpmm_id: str, market_creator: str
|
| 73 |
+
) -> dict[str, Any]:
|
| 74 |
+
omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
|
| 75 |
+
market_creator_id = market_creators_map[market_creator]
|
| 76 |
+
query = get_token_amounts_query.substitute(
|
| 77 |
+
fpmm_creator=market_creator_id.lower(),
|
| 78 |
+
fpmm_id=fpmm_id,
|
| 79 |
+
)
|
| 80 |
+
content_json = _to_content(query)
|
| 81 |
+
# print(f"Executing liquidity query {query}")
|
| 82 |
+
res = requests.post(omen_subgraph, headers=headers, json=content_json)
|
| 83 |
+
result_json = res.json()
|
| 84 |
+
tokens_info = result_json.get("data", {}).get("fpmmLiquidities", [])
|
| 85 |
+
if not tokens_info:
|
| 86 |
+
return None
|
| 87 |
+
|
| 88 |
+
# the second item is the final information of the market
|
| 89 |
+
first_info = tokens_info[1]
|
| 90 |
+
token_amounts = [int(x) for x in first_info["outcomeTokenAmounts"]]
|
| 91 |
+
time.sleep(IPFS_POLL_INTERVAL)
|
| 92 |
+
return {fpmm_id: token_amounts}
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]:
|
| 96 |
+
"""Convert hex to int"""
|
| 97 |
+
if isinstance(x, float):
|
| 98 |
+
return np.nan
|
| 99 |
+
if isinstance(x, str):
|
| 100 |
+
if x == INVALID_ANSWER_HEX:
|
| 101 |
+
return "invalid"
|
| 102 |
+
return "yes" if int(x, 16) == 0 else "no"
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def get_closed_markets():
|
| 106 |
+
print("Reading parquet file with closed markets data from trades")
|
| 107 |
+
try:
|
| 108 |
+
markets = pd.read_parquet(DATA_DIR / "fpmmTrades.parquet")
|
| 109 |
+
except Exception:
|
| 110 |
+
print("Error reading the parquet file")
|
| 111 |
+
|
| 112 |
+
columns_of_interest = [
|
| 113 |
+
"fpmm.currentAnswer",
|
| 114 |
+
"fpmm.id",
|
| 115 |
+
"fpmm.openingTimestamp",
|
| 116 |
+
"market_creator",
|
| 117 |
+
]
|
| 118 |
+
markets = markets[columns_of_interest]
|
| 119 |
+
markets.rename(
|
| 120 |
+
columns={
|
| 121 |
+
"fpmm.currentAnswer": "currentAnswer",
|
| 122 |
+
"fpmm.openingTimestamp": "openingTimestamp",
|
| 123 |
+
"fpmm.id": "id",
|
| 124 |
+
},
|
| 125 |
+
inplace=True,
|
| 126 |
+
)
|
| 127 |
+
markets = markets.drop_duplicates(subset=["id"], keep="last")
|
| 128 |
+
# remove invalid answers
|
| 129 |
+
markets = markets.loc[markets["currentAnswer"] != INVALID_ANSWER_HEX]
|
| 130 |
+
markets["currentAnswer"] = markets["currentAnswer"].apply(
|
| 131 |
+
lambda x: convert_hex_to_int(x)
|
| 132 |
+
)
|
| 133 |
+
markets.dropna(inplace=True)
|
| 134 |
+
markets["opening_datetime"] = markets["openingTimestamp"].apply(
|
| 135 |
+
lambda x: datetime.fromtimestamp(int(x))
|
| 136 |
+
)
|
| 137 |
+
markets = markets.sort_values(by="opening_datetime", ascending=True)
|
| 138 |
+
return markets
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def kl_divergence(p, q):
|
| 142 |
+
"""
|
| 143 |
+
Compute KL divergence for a single sample with two probabilities.
|
| 144 |
+
|
| 145 |
+
:param p: First probability (true distribution)
|
| 146 |
+
:param q: Second probability (approximating distribution)
|
| 147 |
+
:return: KL divergence value
|
| 148 |
+
"""
|
| 149 |
+
# Ensure probabilities sum to 1
|
| 150 |
+
p = np.array([p, 1 - p])
|
| 151 |
+
q = np.array([q, 1 - q])
|
| 152 |
+
|
| 153 |
+
# Avoid division by zero
|
| 154 |
+
epsilon = 1e-10
|
| 155 |
+
q = np.clip(q, epsilon, 1 - epsilon)
|
| 156 |
+
|
| 157 |
+
# Compute KL divergence
|
| 158 |
+
kl_div = np.sum(p * np.log(p / q))
|
| 159 |
+
|
| 160 |
+
return kl_div
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def market_KL_divergence(market_row: pd.DataFrame) -> float:
|
| 164 |
+
"""Function to compute the divergence based on the formula
|
| 165 |
+
Formula in https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence"""
|
| 166 |
+
current_answer = market_row.currentAnswer # "yes", "no"
|
| 167 |
+
candidate_prob = market_row.first_outcome_prob
|
| 168 |
+
target_prob = 1.0 # for yes outcome
|
| 169 |
+
if current_answer == "no":
|
| 170 |
+
target_prob = 0.0 # = 0% for yes outcome
|
| 171 |
+
|
| 172 |
+
# we have only one sample, the final probability based on tokens
|
| 173 |
+
return kl_divergence(candidate_prob, target_prob)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def compute_tokens_prob(token_amounts: list) -> list:
|
| 177 |
+
first_token_amounts = token_amounts[0]
|
| 178 |
+
second_token_amounts = token_amounts[1]
|
| 179 |
+
total_tokens = first_token_amounts + second_token_amounts
|
| 180 |
+
first_token_prob = 1 - round((first_token_amounts / total_tokens), 4)
|
| 181 |
+
return [first_token_prob, 1 - first_token_prob]
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def prepare_closed_markets_data():
|
| 185 |
+
closed_markets = get_closed_markets()
|
| 186 |
+
closed_markets["first_outcome_prob"] = -1.0
|
| 187 |
+
closed_markets["second_outcome_prob"] = -1.0
|
| 188 |
+
total_markets = len(closed_markets)
|
| 189 |
+
markets_no_info = []
|
| 190 |
+
no_info = 0
|
| 191 |
+
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
|
| 192 |
+
futures = []
|
| 193 |
+
for i in range(total_markets):
|
| 194 |
+
futures.append(
|
| 195 |
+
executor.submit(
|
| 196 |
+
collect_liquidity_info,
|
| 197 |
+
i,
|
| 198 |
+
closed_markets.iloc[i].id,
|
| 199 |
+
closed_markets.iloc[i].market_creator,
|
| 200 |
+
)
|
| 201 |
+
)
|
| 202 |
+
markets_with_info = 0
|
| 203 |
+
for future in tqdm(
|
| 204 |
+
as_completed(futures),
|
| 205 |
+
total=len(futures),
|
| 206 |
+
desc=f"Fetching Market liquidity info",
|
| 207 |
+
):
|
| 208 |
+
token_amounts_dict = future.result()
|
| 209 |
+
if token_amounts_dict:
|
| 210 |
+
fpmm_id, token_amounts = token_amounts_dict.popitem()
|
| 211 |
+
if token_amounts:
|
| 212 |
+
tokens_prob = compute_tokens_prob(token_amounts)
|
| 213 |
+
closed_markets.loc[
|
| 214 |
+
closed_markets["id"] == fpmm_id, "first_outcome_prob"
|
| 215 |
+
] = tokens_prob[0]
|
| 216 |
+
closed_markets.loc[
|
| 217 |
+
closed_markets["id"] == fpmm_id, "second_outcome_prob"
|
| 218 |
+
] = tokens_prob[1]
|
| 219 |
+
markets_with_info += 1
|
| 220 |
+
else:
|
| 221 |
+
tqdm.write(f"Skipping market with no liquidity info")
|
| 222 |
+
markets_no_info.append(i)
|
| 223 |
+
else:
|
| 224 |
+
tqdm.write(f"Skipping market with no liquidity info")
|
| 225 |
+
no_info += 1
|
| 226 |
+
|
| 227 |
+
print(f"Markets with info = {markets_with_info}")
|
| 228 |
+
# Removing markets with no liq info
|
| 229 |
+
closed_markets = closed_markets.loc[closed_markets["first_outcome_prob"] != -1.0]
|
| 230 |
+
print(
|
| 231 |
+
f"Finished computing all markets liquidity info. Final length = {len(closed_markets)}"
|
| 232 |
+
)
|
| 233 |
+
if len(markets_no_info) > 0:
|
| 234 |
+
print(
|
| 235 |
+
f"There were {len(markets_no_info)} markets with no liquidity info. Printing some index of the dataframe"
|
| 236 |
+
)
|
| 237 |
+
with open("no_liq_info.pickle", "wb") as file:
|
| 238 |
+
pickle.dump(markets_no_info, file)
|
| 239 |
+
print(markets_no_info[:1])
|
| 240 |
+
print(closed_markets.head())
|
| 241 |
+
# Add the KullbackβLeibler divergence values
|
| 242 |
+
print("Computing KullbackβLeibler (KL) divergence")
|
| 243 |
+
closed_markets["kl_divergence"] = closed_markets.apply(
|
| 244 |
+
lambda x: market_KL_divergence(x), axis=1
|
| 245 |
+
)
|
| 246 |
+
closed_markets.to_parquet(DATA_DIR / "closed_markets_div.parquet", index=False)
|
| 247 |
+
print("Finished preparing final dataset for visualization")
|
| 248 |
+
print(closed_markets.head())
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
if __name__ == "__main__":
|
| 252 |
+
prepare_closed_markets_data()
|
scripts/metrics.py
CHANGED
|
@@ -69,9 +69,9 @@ def compute_trader_metrics_by_market_creator(
|
|
| 69 |
if len(filtered_traders_data) == 0:
|
| 70 |
tqdm.write(f"No data. Skipping market creator {market_creator}")
|
| 71 |
return {} # No Data
|
| 72 |
-
tqdm.write(
|
| 73 |
-
|
| 74 |
-
)
|
| 75 |
metrics = compute_metrics(trader_address, filtered_traders_data)
|
| 76 |
return metrics
|
| 77 |
|
|
|
|
| 69 |
if len(filtered_traders_data) == 0:
|
| 70 |
tqdm.write(f"No data. Skipping market creator {market_creator}")
|
| 71 |
return {} # No Data
|
| 72 |
+
# tqdm.write(
|
| 73 |
+
# f"Volume of data for trader {trader_address} and market creator {market_creator} = {len(filtered_traders_data)}"
|
| 74 |
+
# )
|
| 75 |
metrics = compute_metrics(trader_address, filtered_traders_data)
|
| 76 |
return metrics
|
| 77 |
|
tabs/market_plots.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import seaborn as sns
|
| 5 |
+
from typing import Tuple
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def plot_kl_div_per_market(closed_markets: pd.DataFrame) -> gr.Plot:
|
| 10 |
+
|
| 11 |
+
# adding the total
|
| 12 |
+
all_markets = closed_markets.copy(deep=True)
|
| 13 |
+
all_markets["market_creator"] = "all"
|
| 14 |
+
|
| 15 |
+
# merging both dataframes
|
| 16 |
+
final_markets = pd.concat([closed_markets, all_markets], ignore_index=True)
|
| 17 |
+
final_markets = final_markets.sort_values(by="opening_datetime", ascending=True)
|
| 18 |
+
|
| 19 |
+
fig = px.box(
|
| 20 |
+
final_markets,
|
| 21 |
+
x="month_year_week",
|
| 22 |
+
y="kl_divergence",
|
| 23 |
+
color="market_creator",
|
| 24 |
+
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
|
| 25 |
+
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
|
| 26 |
+
)
|
| 27 |
+
fig.update_traces(boxmean=True)
|
| 28 |
+
fig.update_layout(
|
| 29 |
+
xaxis_title="Markets closing Week",
|
| 30 |
+
yaxis_title="KullbackβLeibler divergence",
|
| 31 |
+
legend=dict(yanchor="top", y=0.5),
|
| 32 |
+
)
|
| 33 |
+
fig.update_xaxes(tickformat="%b %d\n%Y")
|
| 34 |
+
|
| 35 |
+
return gr.Plot(
|
| 36 |
+
value=fig,
|
| 37 |
+
)
|
tabs/trader_plots.py
CHANGED
|
@@ -12,7 +12,7 @@ trader_metric_choices = [
|
|
| 12 |
default_trader_metric = "ROI"
|
| 13 |
|
| 14 |
|
| 15 |
-
def
|
| 16 |
metric_text = """
|
| 17 |
## Description of the graph
|
| 18 |
These metrics are computed weekly. The statistical measures are:
|
|
|
|
| 12 |
default_trader_metric = "ROI"
|
| 13 |
|
| 14 |
|
| 15 |
+
def get_metrics_text() -> gr.Markdown:
|
| 16 |
metric_text = """
|
| 17 |
## Description of the graph
|
| 18 |
These metrics are computed weekly. The statistical measures are:
|