Spaces:
Runtime error
Runtime error
cyberosa
commited on
Commit
Β·
65733ce
1
Parent(s):
2206479
adding new needed data source for pearl agents
Browse files- app.py +27 -4
- tabs/agent_graphs.py +69 -4
app.py
CHANGED
|
@@ -27,7 +27,11 @@ from tabs.trader_plots import (
|
|
| 27 |
plot_total_bet_amount,
|
| 28 |
plot_active_traders,
|
| 29 |
)
|
| 30 |
-
from tabs.agent_graphs import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
from tabs.daily_graphs import (
|
| 33 |
get_current_week_data,
|
|
@@ -151,7 +155,14 @@ def load_all_data():
|
|
| 151 |
repo_type="dataset",
|
| 152 |
)
|
| 153 |
df9 = pd.read_parquet(daa_pearl_df)
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
|
| 157 |
def prepare_data():
|
|
@@ -166,6 +177,7 @@ def prepare_data():
|
|
| 166 |
all_mech_calls,
|
| 167 |
daa_qs_df,
|
| 168 |
daa_pearl_df,
|
|
|
|
| 169 |
) = load_all_data()
|
| 170 |
all_trades["creation_timestamp"] = all_trades["creation_timestamp"].dt.tz_convert(
|
| 171 |
"UTC"
|
|
@@ -243,6 +255,7 @@ def prepare_data():
|
|
| 243 |
all_mech_calls,
|
| 244 |
daa_qs_df,
|
| 245 |
daa_pearl_df,
|
|
|
|
| 246 |
)
|
| 247 |
|
| 248 |
|
|
@@ -256,6 +269,7 @@ def prepare_data():
|
|
| 256 |
all_mech_calls,
|
| 257 |
daa_qs_df,
|
| 258 |
daa_pearl_df,
|
|
|
|
| 259 |
) = prepare_data()
|
| 260 |
|
| 261 |
retention_df = prepare_retention_dataset(
|
|
@@ -559,10 +573,19 @@ with demo:
|
|
| 559 |
with gr.Row():
|
| 560 |
pearl_rolling_avg_plot = plot_rolling_average_roi(
|
| 561 |
weekly_roi_df=weekly_metrics_by_market_creator,
|
| 562 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
)
|
| 564 |
with gr.Row():
|
| 565 |
-
|
|
|
|
|
|
|
|
|
|
| 566 |
|
| 567 |
with gr.TabItem("πͺ Retention metrics (WIP)"):
|
| 568 |
with gr.Row():
|
|
|
|
| 27 |
plot_total_bet_amount,
|
| 28 |
plot_active_traders,
|
| 29 |
)
|
| 30 |
+
from tabs.agent_graphs import (
|
| 31 |
+
plot_rolling_average_dune,
|
| 32 |
+
plot_rolling_average_roi,
|
| 33 |
+
plot_weekly_average_roi,
|
| 34 |
+
)
|
| 35 |
|
| 36 |
from tabs.daily_graphs import (
|
| 37 |
get_current_week_data,
|
|
|
|
| 155 |
repo_type="dataset",
|
| 156 |
)
|
| 157 |
df9 = pd.read_parquet(daa_pearl_df)
|
| 158 |
+
# Read pearl_agents.parquet
|
| 159 |
+
pearl_agents_df = hf_hub_download(
|
| 160 |
+
repo_id="valory/Olas-predict-dataset",
|
| 161 |
+
filename="pearl_agents.parquet",
|
| 162 |
+
repo_type="dataset",
|
| 163 |
+
)
|
| 164 |
+
df10 = pd.read_parquet(pearl_agents_df)
|
| 165 |
+
return df1, df2, df3, df4, df5, df6, df7, df8, df9, df10
|
| 166 |
|
| 167 |
|
| 168 |
def prepare_data():
|
|
|
|
| 177 |
all_mech_calls,
|
| 178 |
daa_qs_df,
|
| 179 |
daa_pearl_df,
|
| 180 |
+
pearl_agents_df,
|
| 181 |
) = load_all_data()
|
| 182 |
all_trades["creation_timestamp"] = all_trades["creation_timestamp"].dt.tz_convert(
|
| 183 |
"UTC"
|
|
|
|
| 255 |
all_mech_calls,
|
| 256 |
daa_qs_df,
|
| 257 |
daa_pearl_df,
|
| 258 |
+
pearl_agents_df,
|
| 259 |
)
|
| 260 |
|
| 261 |
|
|
|
|
| 269 |
all_mech_calls,
|
| 270 |
daa_qs_df,
|
| 271 |
daa_pearl_df,
|
| 272 |
+
pearl_agents_df,
|
| 273 |
) = prepare_data()
|
| 274 |
|
| 275 |
retention_df = prepare_retention_dataset(
|
|
|
|
| 573 |
with gr.Row():
|
| 574 |
pearl_rolling_avg_plot = plot_rolling_average_roi(
|
| 575 |
weekly_roi_df=weekly_metrics_by_market_creator,
|
| 576 |
+
pearl_agents=pearl_agents_df,
|
| 577 |
+
)
|
| 578 |
+
with gr.Row():
|
| 579 |
+
gr.Markdown("# Average weekly ROI for Pearl agents")
|
| 580 |
+
with gr.Row():
|
| 581 |
+
gr.Markdown(
|
| 582 |
+
"This graph shows the average weekly ROI for Pearl agents. The data is based on the latest DAA results."
|
| 583 |
)
|
| 584 |
with gr.Row():
|
| 585 |
+
weekly_avg_roi_plot = plot_weekly_average_roi(
|
| 586 |
+
weekly_roi_df=weekly_metrics_by_market_creator,
|
| 587 |
+
pearl_agents=pearl_agents_df,
|
| 588 |
+
)
|
| 589 |
|
| 590 |
with gr.TabItem("πͺ Retention metrics (WIP)"):
|
| 591 |
with gr.Row():
|
tabs/agent_graphs.py
CHANGED
|
@@ -7,7 +7,7 @@ import plotly.express as px
|
|
| 7 |
def plot_rolling_average_dune(
|
| 8 |
daa_df: pd.DataFrame,
|
| 9 |
) -> gr.Plot:
|
| 10 |
-
"""Function to plot the rolling average of daily active
|
| 11 |
|
| 12 |
fig = px.bar(
|
| 13 |
daa_df,
|
|
@@ -28,7 +28,7 @@ def plot_rolling_average(
|
|
| 28 |
daa_df: pd.DataFrame,
|
| 29 |
market_creator: str = None,
|
| 30 |
) -> gr.Plot:
|
| 31 |
-
"""Function to plot the rolling average of daily active
|
| 32 |
if market_creator is not None:
|
| 33 |
filtered_traders_df = daa_df.loc[daa_df["market_creator"] == market_creator]
|
| 34 |
rolling_avg_df = get_sevenday_rolling_average(filtered_traders_df)
|
|
@@ -77,15 +77,24 @@ def get_sevenday_rolling_average(daa_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 77 |
|
| 78 |
|
| 79 |
def plot_rolling_average_roi(
|
| 80 |
-
weekly_roi_df: pd.DataFrame,
|
| 81 |
) -> gr.Plot:
|
| 82 |
"""Function to plot the rolling average of ROI for pearl agents"""
|
| 83 |
# Get the list of unique addresses from the daa_pearl_df
|
| 84 |
-
unique_addresses =
|
| 85 |
# Filter the weekly_roi_df to include only those addresses
|
| 86 |
filtered_weekly_roi_df = weekly_roi_df[
|
| 87 |
weekly_roi_df["trader_address"].isin(unique_addresses)
|
| 88 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
# Get the 2-week rolling average of ROI
|
| 90 |
rolling_avg_roi_df = get_twoweeks_rolling_average_roi(filtered_weekly_roi_df)
|
| 91 |
print(rolling_avg_roi_df.head())
|
|
@@ -125,3 +134,59 @@ def get_twoweeks_rolling_average_roi(weekly_roi_df: pd.DataFrame) -> pd.DataFram
|
|
| 125 |
)
|
| 126 |
trader_rolling_avg_roi.rename(columns={"roi": "rolling_avg_roi"}, inplace=True)
|
| 127 |
return trader_rolling_avg_roi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
def plot_rolling_average_dune(
|
| 8 |
daa_df: pd.DataFrame,
|
| 9 |
) -> gr.Plot:
|
| 10 |
+
"""Function to plot the rolling average of daily active agents"""
|
| 11 |
|
| 12 |
fig = px.bar(
|
| 13 |
daa_df,
|
|
|
|
| 28 |
daa_df: pd.DataFrame,
|
| 29 |
market_creator: str = None,
|
| 30 |
) -> gr.Plot:
|
| 31 |
+
"""Function to plot the rolling average of daily active agents"""
|
| 32 |
if market_creator is not None:
|
| 33 |
filtered_traders_df = daa_df.loc[daa_df["market_creator"] == market_creator]
|
| 34 |
rolling_avg_df = get_sevenday_rolling_average(filtered_traders_df)
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
def plot_rolling_average_roi(
|
| 80 |
+
weekly_roi_df: pd.DataFrame, pearl_agents: pd.DataFrame
|
| 81 |
) -> gr.Plot:
|
| 82 |
"""Function to plot the rolling average of ROI for pearl agents"""
|
| 83 |
# Get the list of unique addresses from the daa_pearl_df
|
| 84 |
+
unique_addresses = pearl_agents["safe_address"].unique()
|
| 85 |
# Filter the weekly_roi_df to include only those addresses
|
| 86 |
filtered_weekly_roi_df = weekly_roi_df[
|
| 87 |
weekly_roi_df["trader_address"].isin(unique_addresses)
|
| 88 |
]
|
| 89 |
+
# Select only the columns: "roi", "month_year_week", "trader_address"
|
| 90 |
+
filtered_weekly_roi_df = filtered_weekly_roi_df[
|
| 91 |
+
["roi", "month_year_week", "trader_address"]
|
| 92 |
+
].copy()
|
| 93 |
+
# Remove duplicates
|
| 94 |
+
filtered_weekly_roi_df = filtered_weekly_roi_df.drop_duplicates(
|
| 95 |
+
subset=["month_year_week", "trader_address"]
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
# Get the 2-week rolling average of ROI
|
| 99 |
rolling_avg_roi_df = get_twoweeks_rolling_average_roi(filtered_weekly_roi_df)
|
| 100 |
print(rolling_avg_roi_df.head())
|
|
|
|
| 134 |
)
|
| 135 |
trader_rolling_avg_roi.rename(columns={"roi": "rolling_avg_roi"}, inplace=True)
|
| 136 |
return trader_rolling_avg_roi
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def get_weekly_average_roi(weekly_roi_df: pd.DataFrame) -> pd.DataFrame:
|
| 140 |
+
"""Function to get the weekly average ROI for pearl agents"""
|
| 141 |
+
# Create a local copy of the dataframe
|
| 142 |
+
local_df = weekly_roi_df.copy()
|
| 143 |
+
|
| 144 |
+
# Convert string dates to datetime
|
| 145 |
+
local_df["month_year_week"] = pd.to_datetime(
|
| 146 |
+
local_df["month_year_week"], format="%b-%d-%Y"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Group by month_year_week and market_creator, then calculate the mean ROI
|
| 150 |
+
weekly_avg_roi = (
|
| 151 |
+
local_df.groupby(["month_year_week"], sort=False)["roi"].mean().reset_index()
|
| 152 |
+
)
|
| 153 |
+
return weekly_avg_roi
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def plot_weekly_average_roi(
|
| 157 |
+
weekly_roi_df: pd.DataFrame, pearl_agents: pd.DataFrame
|
| 158 |
+
) -> gr.Plot:
|
| 159 |
+
"""Function to plot the weekly average of ROI for pearl agents"""
|
| 160 |
+
# Get the list of unique addresses from the daa_pearl_df
|
| 161 |
+
unique_addresses = pearl_agents["safe_address"].unique()
|
| 162 |
+
# Filter the weekly_roi_df to include only those addresses
|
| 163 |
+
filtered_weekly_roi_df = weekly_roi_df[
|
| 164 |
+
weekly_roi_df["trader_address"].isin(unique_addresses)
|
| 165 |
+
]
|
| 166 |
+
# Select only the columns: "roi", "month_year_week", "trader_address"
|
| 167 |
+
filtered_weekly_roi_df = filtered_weekly_roi_df[
|
| 168 |
+
["roi", "month_year_week", "trader_address"]
|
| 169 |
+
].copy()
|
| 170 |
+
# Remove duplicates
|
| 171 |
+
filtered_weekly_roi_df = filtered_weekly_roi_df.drop_duplicates(
|
| 172 |
+
subset=["month_year_week", "trader_address"]
|
| 173 |
+
)
|
| 174 |
+
# Get the weekly average ROI
|
| 175 |
+
weekly_avg_roi_df = get_weekly_average_roi(filtered_weekly_roi_df)
|
| 176 |
+
# plot the weekly average ROI
|
| 177 |
+
print(weekly_avg_roi_df.head())
|
| 178 |
+
# Ensure 'month_year_week' is a column, not an index
|
| 179 |
+
if "month_year_week" not in weekly_avg_roi_df.columns:
|
| 180 |
+
weekly_avg_roi_df = weekly_avg_roi_df.reset_index()
|
| 181 |
+
fig = px.line(
|
| 182 |
+
weekly_avg_roi_df,
|
| 183 |
+
x="month_year_week",
|
| 184 |
+
y="roi",
|
| 185 |
+
)
|
| 186 |
+
fig.update_layout(
|
| 187 |
+
xaxis_title="Week",
|
| 188 |
+
yaxis_title="Weekly average ROI for pearl agents",
|
| 189 |
+
)
|
| 190 |
+
return gr.Plot(
|
| 191 |
+
value=fig,
|
| 192 |
+
)
|