Spaces:
Runtime error
Runtime error
cyberosa
commited on
Commit
Β·
dff5e35
1
Parent(s):
5f3c579
corrected version of wow retention
Browse files- app.py +45 -17
- notebooks/retention_metrics.ipynb +173 -1
- scripts/retention_metrics.py +44 -11
- tabs/retention_plots.py +2 -1
app.py
CHANGED
|
@@ -93,14 +93,22 @@ def get_all_data():
|
|
| 93 |
FROM read_parquet('./data/unknown_traders.parquet')
|
| 94 |
"""
|
| 95 |
df4 = con.execute(query4).fetchdf()
|
| 96 |
-
con.close()
|
| 97 |
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
def prepare_data():
|
| 102 |
|
| 103 |
-
all_trades, closed_markets, daily_info, unknown_traders =
|
|
|
|
|
|
|
| 104 |
|
| 105 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
| 106 |
|
|
@@ -135,12 +143,12 @@ def prepare_data():
|
|
| 135 |
closed_markets["month_year_week"] = (
|
| 136 |
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d-%Y")
|
| 137 |
)
|
| 138 |
-
return traders_data, closed_markets, daily_info, unknown_traders
|
| 139 |
|
| 140 |
|
| 141 |
-
traders_data, closed_markets, daily_info, unknown_traders = prepare_data()
|
| 142 |
retention_df = prepare_retention_dataset(
|
| 143 |
-
|
| 144 |
)
|
| 145 |
|
| 146 |
demo = gr.Blocks()
|
|
@@ -406,17 +414,37 @@ with demo:
|
|
| 406 |
with gr.Row():
|
| 407 |
gr.Markdown("# Wow retention by trader type")
|
| 408 |
with gr.Row():
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
wow_retention=
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
|
| 421 |
with gr.TabItem("βοΈ Active traders"):
|
| 422 |
with gr.Row():
|
|
|
|
| 93 |
FROM read_parquet('./data/unknown_traders.parquet')
|
| 94 |
"""
|
| 95 |
df4 = con.execute(query4).fetchdf()
|
|
|
|
| 96 |
|
| 97 |
+
# Query to fetch retention activity data
|
| 98 |
+
query5 = f"""
|
| 99 |
+
SELECT *
|
| 100 |
+
FROM read_parquet('./data/retention_activity.parquet')
|
| 101 |
+
"""
|
| 102 |
+
df5 = con.execute(query5).fetchdf()
|
| 103 |
+
con.close()
|
| 104 |
+
return df1, df2, df3, df4, df5
|
| 105 |
|
| 106 |
|
| 107 |
def prepare_data():
|
| 108 |
|
| 109 |
+
all_trades, closed_markets, daily_info, unknown_traders, retention_df = (
|
| 110 |
+
get_all_data()
|
| 111 |
+
)
|
| 112 |
|
| 113 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
| 114 |
|
|
|
|
| 143 |
closed_markets["month_year_week"] = (
|
| 144 |
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d-%Y")
|
| 145 |
)
|
| 146 |
+
return traders_data, closed_markets, daily_info, unknown_traders, retention_df
|
| 147 |
|
| 148 |
|
| 149 |
+
traders_data, closed_markets, daily_info, unknown_traders, retention_df = prepare_data()
|
| 150 |
retention_df = prepare_retention_dataset(
|
| 151 |
+
retention_df=retention_df, unknown_df=unknown_traders
|
| 152 |
)
|
| 153 |
|
| 154 |
demo = gr.Blocks()
|
|
|
|
| 414 |
with gr.Row():
|
| 415 |
gr.Markdown("# Wow retention by trader type")
|
| 416 |
with gr.Row():
|
| 417 |
+
with gr.Column(scale=1):
|
| 418 |
+
gr.Markdown("## Wow retention in Pearl markets")
|
| 419 |
+
wow_retention = calculate_wow_retention_by_type(
|
| 420 |
+
retention_df, market_creator="pearl"
|
| 421 |
+
)
|
| 422 |
+
wow_retention_plot = plot_wow_retention_by_type(
|
| 423 |
+
wow_retention=wow_retention
|
| 424 |
+
)
|
| 425 |
+
with gr.Column(scale=1):
|
| 426 |
+
gr.Markdown("## Wow retention in Quickstart markets")
|
| 427 |
+
wow_retention = calculate_wow_retention_by_type(
|
| 428 |
+
retention_df, market_creator="quickstart"
|
| 429 |
+
)
|
| 430 |
+
wow_retention_plot = plot_wow_retention_by_type(
|
| 431 |
+
wow_retention=wow_retention
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
# with gr.Row():
|
| 435 |
+
# gr.Markdown("# Cohort retention in pearl traders")
|
| 436 |
+
# with gr.Row():
|
| 437 |
+
# cohort_retention = calculate_cohort_retention(df=retention_df)
|
| 438 |
+
# cohort_retention_plot = plot_cohort_retention_heatmap(
|
| 439 |
+
# retention_matrix=cohort_retention
|
| 440 |
+
# )
|
| 441 |
+
# with gr.Row():
|
| 442 |
+
# gr.Markdown("# Cohort retention in qs traders")
|
| 443 |
+
# with gr.Row():
|
| 444 |
+
# cohort_retention = calculate_cohort_retention(df=retention_df)
|
| 445 |
+
# cohort_retention_plot = plot_cohort_retention_heatmap(
|
| 446 |
+
# retention_matrix=cohort_retention
|
| 447 |
+
# )
|
| 448 |
|
| 449 |
with gr.TabItem("βοΈ Active traders"):
|
| 450 |
with gr.Row():
|
notebooks/retention_metrics.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
@@ -12,6 +12,178 @@
|
|
| 12 |
"import gc"
|
| 13 |
]
|
| 14 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
{
|
| 16 |
"cell_type": "markdown",
|
| 17 |
"metadata": {},
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 10,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
|
|
| 12 |
"import gc"
|
| 13 |
]
|
| 14 |
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "markdown",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"source": [
|
| 19 |
+
"# Get all activity info from tools.parquet"
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "code",
|
| 24 |
+
"execution_count": 11,
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"outputs": [],
|
| 27 |
+
"source": [
|
| 28 |
+
"retention_df = pd.read_parquet(\"../data/retention_activity.parquet\")"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"execution_count": 12,
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [
|
| 36 |
+
{
|
| 37 |
+
"data": {
|
| 38 |
+
"text/plain": [
|
| 39 |
+
"Index(['trader_address', 'request_time', 'market_creator', 'request_date',\n",
|
| 40 |
+
" 'staking', 'month_year_week'],\n",
|
| 41 |
+
" dtype='object')"
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
"execution_count": 12,
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"output_type": "execute_result"
|
| 47 |
+
}
|
| 48 |
+
],
|
| 49 |
+
"source": [
|
| 50 |
+
"retention_df.columns"
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"cell_type": "code",
|
| 55 |
+
"execution_count": 13,
|
| 56 |
+
"metadata": {},
|
| 57 |
+
"outputs": [
|
| 58 |
+
{
|
| 59 |
+
"data": {
|
| 60 |
+
"text/html": [
|
| 61 |
+
"<div>\n",
|
| 62 |
+
"<style scoped>\n",
|
| 63 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 64 |
+
" vertical-align: middle;\n",
|
| 65 |
+
" }\n",
|
| 66 |
+
"\n",
|
| 67 |
+
" .dataframe tbody tr th {\n",
|
| 68 |
+
" vertical-align: top;\n",
|
| 69 |
+
" }\n",
|
| 70 |
+
"\n",
|
| 71 |
+
" .dataframe thead th {\n",
|
| 72 |
+
" text-align: right;\n",
|
| 73 |
+
" }\n",
|
| 74 |
+
"</style>\n",
|
| 75 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 76 |
+
" <thead>\n",
|
| 77 |
+
" <tr style=\"text-align: right;\">\n",
|
| 78 |
+
" <th></th>\n",
|
| 79 |
+
" <th>trader_address</th>\n",
|
| 80 |
+
" <th>request_time</th>\n",
|
| 81 |
+
" <th>market_creator</th>\n",
|
| 82 |
+
" <th>request_date</th>\n",
|
| 83 |
+
" <th>staking</th>\n",
|
| 84 |
+
" <th>month_year_week</th>\n",
|
| 85 |
+
" </tr>\n",
|
| 86 |
+
" </thead>\n",
|
| 87 |
+
" <tbody>\n",
|
| 88 |
+
" <tr>\n",
|
| 89 |
+
" <th>0</th>\n",
|
| 90 |
+
" <td>0x721de88cee9be146c8f0c7ef1a4188bee36494d6</td>\n",
|
| 91 |
+
" <td>2024-10-25 00:00:20+00:00</td>\n",
|
| 92 |
+
" <td>quickstart</td>\n",
|
| 93 |
+
" <td>2024-10-25</td>\n",
|
| 94 |
+
" <td>non_staking</td>\n",
|
| 95 |
+
" <td>Oct-25-2024</td>\n",
|
| 96 |
+
" </tr>\n",
|
| 97 |
+
" <tr>\n",
|
| 98 |
+
" <th>1</th>\n",
|
| 99 |
+
" <td>0x8a1d5f22b5a3bea34697b85e7b4ad894bf9ee36a</td>\n",
|
| 100 |
+
" <td>2024-10-25 00:00:25+00:00</td>\n",
|
| 101 |
+
" <td>quickstart</td>\n",
|
| 102 |
+
" <td>2024-10-25</td>\n",
|
| 103 |
+
" <td>non_staking</td>\n",
|
| 104 |
+
" <td>Oct-25-2024</td>\n",
|
| 105 |
+
" </tr>\n",
|
| 106 |
+
" <tr>\n",
|
| 107 |
+
" <th>2</th>\n",
|
| 108 |
+
" <td>0xf839eaf4b42eadd917b46d7b6da0dd0e1fd6f684</td>\n",
|
| 109 |
+
" <td>2024-10-25 00:00:55+00:00</td>\n",
|
| 110 |
+
" <td>quickstart</td>\n",
|
| 111 |
+
" <td>2024-10-25</td>\n",
|
| 112 |
+
" <td>non_staking</td>\n",
|
| 113 |
+
" <td>Oct-25-2024</td>\n",
|
| 114 |
+
" </tr>\n",
|
| 115 |
+
" <tr>\n",
|
| 116 |
+
" <th>3</th>\n",
|
| 117 |
+
" <td>0x01274796ce41aa8e8312e05a427ffb4b0d2148f6</td>\n",
|
| 118 |
+
" <td>2024-10-25 00:00:55+00:00</td>\n",
|
| 119 |
+
" <td>quickstart</td>\n",
|
| 120 |
+
" <td>2024-10-25</td>\n",
|
| 121 |
+
" <td>non_staking</td>\n",
|
| 122 |
+
" <td>Oct-25-2024</td>\n",
|
| 123 |
+
" </tr>\n",
|
| 124 |
+
" <tr>\n",
|
| 125 |
+
" <th>4</th>\n",
|
| 126 |
+
" <td>0xc20678890f94d0162593c46fe5da67d9a4b7a6fb</td>\n",
|
| 127 |
+
" <td>2024-10-25 00:01:05+00:00</td>\n",
|
| 128 |
+
" <td>quickstart</td>\n",
|
| 129 |
+
" <td>2024-10-25</td>\n",
|
| 130 |
+
" <td>non_staking</td>\n",
|
| 131 |
+
" <td>Oct-25-2024</td>\n",
|
| 132 |
+
" </tr>\n",
|
| 133 |
+
" </tbody>\n",
|
| 134 |
+
"</table>\n",
|
| 135 |
+
"</div>"
|
| 136 |
+
],
|
| 137 |
+
"text/plain": [
|
| 138 |
+
" trader_address request_time \\\n",
|
| 139 |
+
"0 0x721de88cee9be146c8f0c7ef1a4188bee36494d6 2024-10-25 00:00:20+00:00 \n",
|
| 140 |
+
"1 0x8a1d5f22b5a3bea34697b85e7b4ad894bf9ee36a 2024-10-25 00:00:25+00:00 \n",
|
| 141 |
+
"2 0xf839eaf4b42eadd917b46d7b6da0dd0e1fd6f684 2024-10-25 00:00:55+00:00 \n",
|
| 142 |
+
"3 0x01274796ce41aa8e8312e05a427ffb4b0d2148f6 2024-10-25 00:00:55+00:00 \n",
|
| 143 |
+
"4 0xc20678890f94d0162593c46fe5da67d9a4b7a6fb 2024-10-25 00:01:05+00:00 \n",
|
| 144 |
+
"\n",
|
| 145 |
+
" market_creator request_date staking month_year_week \n",
|
| 146 |
+
"0 quickstart 2024-10-25 non_staking Oct-25-2024 \n",
|
| 147 |
+
"1 quickstart 2024-10-25 non_staking Oct-25-2024 \n",
|
| 148 |
+
"2 quickstart 2024-10-25 non_staking Oct-25-2024 \n",
|
| 149 |
+
"3 quickstart 2024-10-25 non_staking Oct-25-2024 \n",
|
| 150 |
+
"4 quickstart 2024-10-25 non_staking Oct-25-2024 "
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
"execution_count": 13,
|
| 154 |
+
"metadata": {},
|
| 155 |
+
"output_type": "execute_result"
|
| 156 |
+
}
|
| 157 |
+
],
|
| 158 |
+
"source": [
|
| 159 |
+
"retention_df.head()"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": 14,
|
| 165 |
+
"metadata": {},
|
| 166 |
+
"outputs": [
|
| 167 |
+
{
|
| 168 |
+
"data": {
|
| 169 |
+
"text/plain": [
|
| 170 |
+
"staking\n",
|
| 171 |
+
"non_Olas 764956\n",
|
| 172 |
+
"non_staking 275246\n",
|
| 173 |
+
"pearl 56487\n",
|
| 174 |
+
"quickstart 48511\n",
|
| 175 |
+
"Name: count, dtype: int64"
|
| 176 |
+
]
|
| 177 |
+
},
|
| 178 |
+
"execution_count": 14,
|
| 179 |
+
"metadata": {},
|
| 180 |
+
"output_type": "execute_result"
|
| 181 |
+
}
|
| 182 |
+
],
|
| 183 |
+
"source": [
|
| 184 |
+
"retention_df.staking.value_counts()"
|
| 185 |
+
]
|
| 186 |
+
},
|
| 187 |
{
|
| 188 |
"cell_type": "markdown",
|
| 189 |
"metadata": {},
|
scripts/retention_metrics.py
CHANGED
|
@@ -4,10 +4,13 @@ from scripts.utils import DATA_DIR
|
|
| 4 |
|
| 5 |
|
| 6 |
# Basic Week over Week Retention
|
| 7 |
-
def calculate_wow_retention_by_type(
|
|
|
|
|
|
|
|
|
|
| 8 |
# Get unique traders per week and type
|
| 9 |
weekly_traders = (
|
| 10 |
-
|
| 11 |
.nunique()
|
| 12 |
.reset_index()
|
| 13 |
)
|
|
@@ -26,16 +29,16 @@ def calculate_wow_retention_by_type(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 26 |
|
| 27 |
# Get traders in both weeks for this type
|
| 28 |
current_traders = set(
|
| 29 |
-
|
| 30 |
-
(
|
| 31 |
-
& (
|
| 32 |
]["trader_address"]
|
| 33 |
)
|
| 34 |
|
| 35 |
previous_traders = set(
|
| 36 |
-
|
| 37 |
-
(
|
| 38 |
-
& (
|
| 39 |
]["trader_address"]
|
| 40 |
)
|
| 41 |
|
|
@@ -60,10 +63,13 @@ def calculate_wow_retention_by_type(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 60 |
|
| 61 |
|
| 62 |
# Cohort Retention
|
| 63 |
-
def calculate_cohort_retention(
|
|
|
|
|
|
|
|
|
|
| 64 |
# Get first week for each trader
|
| 65 |
first_trades = (
|
| 66 |
-
|
| 67 |
.agg({"creation_timestamp": "min", "month_year_week": "first"})
|
| 68 |
.reset_index()
|
| 69 |
)
|
|
@@ -111,7 +117,7 @@ def calculate_cohort_retention(df, max_weeks=12) -> pd.DataFrame:
|
|
| 111 |
return retention_matrix.round(2)
|
| 112 |
|
| 113 |
|
| 114 |
-
def
|
| 115 |
traders_df: pd.DataFrame, unknown_df: pd.DataFrame
|
| 116 |
) -> pd.DataFrame:
|
| 117 |
|
|
@@ -131,6 +137,33 @@ def prepare_retention_dataset(
|
|
| 131 |
return all_traders
|
| 132 |
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
if __name__ == "__main__":
|
| 135 |
# read all datasets
|
| 136 |
traders_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
# Basic Week over Week Retention
|
| 7 |
+
def calculate_wow_retention_by_type(
|
| 8 |
+
df: pd.DataFrame, market_creator: str
|
| 9 |
+
) -> pd.DataFrame:
|
| 10 |
+
filtered_df = df.loc[df["market_creator"] == market_creator]
|
| 11 |
# Get unique traders per week and type
|
| 12 |
weekly_traders = (
|
| 13 |
+
filtered_df.groupby(["month_year_week", "trader_type"])["trader_address"]
|
| 14 |
.nunique()
|
| 15 |
.reset_index()
|
| 16 |
)
|
|
|
|
| 29 |
|
| 30 |
# Get traders in both weeks for this type
|
| 31 |
current_traders = set(
|
| 32 |
+
filtered_df[
|
| 33 |
+
(filtered_df["month_year_week"] == current_week)
|
| 34 |
+
& (filtered_df["trader_type"] == trader_type)
|
| 35 |
]["trader_address"]
|
| 36 |
)
|
| 37 |
|
| 38 |
previous_traders = set(
|
| 39 |
+
filtered_df[
|
| 40 |
+
(filtered_df["month_year_week"] == previous_week)
|
| 41 |
+
& (filtered_df["trader_type"] == trader_type)
|
| 42 |
]["trader_address"]
|
| 43 |
)
|
| 44 |
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
# Cohort Retention
|
| 66 |
+
def calculate_cohort_retention(
|
| 67 |
+
df: pd.DataFrame, trader_type: str, max_weeks=12
|
| 68 |
+
) -> pd.DataFrame:
|
| 69 |
+
df_filtered = df.loc[df["trader_type"] == trader_type]
|
| 70 |
# Get first week for each trader
|
| 71 |
first_trades = (
|
| 72 |
+
df_filtered.groupby("trader_address")
|
| 73 |
.agg({"creation_timestamp": "min", "month_year_week": "first"})
|
| 74 |
.reset_index()
|
| 75 |
)
|
|
|
|
| 117 |
return retention_matrix.round(2)
|
| 118 |
|
| 119 |
|
| 120 |
+
def merge_retention_dataset(
|
| 121 |
traders_df: pd.DataFrame, unknown_df: pd.DataFrame
|
| 122 |
) -> pd.DataFrame:
|
| 123 |
|
|
|
|
| 137 |
return all_traders
|
| 138 |
|
| 139 |
|
| 140 |
+
def prepare_retention_dataset(
|
| 141 |
+
retention_df: pd.DataFrame, unknown_df: pd.DataFrame
|
| 142 |
+
) -> pd.DataFrame:
|
| 143 |
+
|
| 144 |
+
retention_df["trader_type"] = retention_df["staking"].apply(
|
| 145 |
+
lambda x: "non_Olas" if x == "non_Olas" else "Olas"
|
| 146 |
+
)
|
| 147 |
+
retention_df.rename(columns={"request_time": "creation_timestamp"}, inplace=True)
|
| 148 |
+
retention_df = retention_df[
|
| 149 |
+
["trader_type", "market_creator", "trader_address", "creation_timestamp"]
|
| 150 |
+
]
|
| 151 |
+
unknown_df["trader_type"] = "unclassified"
|
| 152 |
+
unknown_df = unknown_df[
|
| 153 |
+
["trader_type", "market_creator", "trader_address", "creation_timestamp"]
|
| 154 |
+
]
|
| 155 |
+
all_traders = pd.concat([retention_df, unknown_df], ignore_index=True)
|
| 156 |
+
|
| 157 |
+
all_traders["creation_timestamp"] = pd.to_datetime(
|
| 158 |
+
all_traders["creation_timestamp"]
|
| 159 |
+
)
|
| 160 |
+
all_traders = all_traders.sort_values(by="creation_timestamp", ascending=True)
|
| 161 |
+
all_traders["month_year_week"] = (
|
| 162 |
+
all_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d-%Y")
|
| 163 |
+
)
|
| 164 |
+
return all_traders
|
| 165 |
+
|
| 166 |
+
|
| 167 |
if __name__ == "__main__":
|
| 168 |
# read all datasets
|
| 169 |
traders_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
|
tabs/retention_plots.py
CHANGED
|
@@ -53,7 +53,8 @@ def plot_wow_retention_by_type(wow_retention):
|
|
| 53 |
)
|
| 54 |
|
| 55 |
|
| 56 |
-
def plot_cohort_retention_heatmap(retention_matrix):
|
|
|
|
| 57 |
# Create a copy of the matrix to avoid modifying the original
|
| 58 |
retention_matrix = retention_matrix.copy()
|
| 59 |
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
|
| 56 |
+
def plot_cohort_retention_heatmap(retention_matrix: pd.DataFrame):
|
| 57 |
+
|
| 58 |
# Create a copy of the matrix to avoid modifying the original
|
| 59 |
retention_matrix = retention_matrix.copy()
|
| 60 |
|