Spaces:
Runtime error
Runtime error
cyberosa
commited on
Commit
Β·
e376aff
1
Parent(s):
c571577
updated graphs after missing non_Olas group
Browse files
app.py
CHANGED
|
@@ -101,15 +101,27 @@ def get_all_data():
|
|
| 101 |
FROM read_parquet('./data/retention_activity.parquet')
|
| 102 |
"""
|
| 103 |
df5 = con.execute(query5).fetchdf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
con.close()
|
| 105 |
-
return df1, df2, df3, df4, df5
|
| 106 |
|
| 107 |
|
| 108 |
def prepare_data():
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
| 115 |
|
|
@@ -150,12 +162,24 @@ def prepare_data():
|
|
| 150 |
.dt.to_period("W")
|
| 151 |
.dt.start_time.dt.strftime("%b-%d-%Y")
|
| 152 |
)
|
| 153 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
retention_df = prepare_retention_dataset(
|
| 160 |
retention_df=raw_retention_df, unknown_df=unknown_traders
|
| 161 |
)
|
|
@@ -170,9 +194,11 @@ weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
|
| 170 |
weekly_o_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
| 171 |
traders_data, trader_filter="Olas"
|
| 172 |
)
|
| 173 |
-
weekly_non_olas_metrics_by_market_creator =
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
| 176 |
weekly_unknown_trader_metrics_by_market_creator = None
|
| 177 |
if len(unknown_traders) > 0:
|
| 178 |
weekly_unknown_trader_metrics_by_market_creator = (
|
|
@@ -181,10 +207,18 @@ if len(unknown_traders) > 0:
|
|
| 181 |
)
|
| 182 |
)
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
traders_data=traders_data,
|
|
|
|
|
|
|
|
|
|
| 187 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
with demo:
|
| 190 |
gr.HTML("<h1>Traders monitoring dashboard </h1>")
|
|
@@ -251,37 +285,37 @@ with demo:
|
|
| 251 |
inputs=trader_o_details_selector,
|
| 252 |
outputs=o_trader_markets_plot,
|
| 253 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
)
|
| 264 |
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
metric_name=default_trader_metric,
|
| 269 |
traders_df=weekly_non_olas_metrics_by_market_creator,
|
| 270 |
)
|
| 271 |
-
with gr.Column(scale=1):
|
| 272 |
-
trade_details_text = get_metrics_text(trader_type="non_Olas")
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
)
|
| 279 |
-
|
| 280 |
-
trader_no_details_selector.change(
|
| 281 |
-
update_no_trader_details,
|
| 282 |
-
inputs=trader_no_details_selector,
|
| 283 |
-
outputs=trader_no_markets_plot,
|
| 284 |
-
)
|
| 285 |
# Unknown traders graph
|
| 286 |
if weekly_unknown_trader_metrics_by_market_creator is not None:
|
| 287 |
with gr.Row():
|
|
@@ -453,7 +487,7 @@ with demo:
|
|
| 453 |
)
|
| 454 |
|
| 455 |
with gr.Row():
|
| 456 |
-
gr.Markdown("# Cohort retention
|
| 457 |
with gr.Row():
|
| 458 |
gr.Markdown(
|
| 459 |
"The Cohort groups are organized by cohort weeks. A trader is part of a cohort group/week where it was detected the FIRST activity ever of that trader."
|
|
@@ -470,7 +504,8 @@ with demo:
|
|
| 470 |
)
|
| 471 |
with gr.Row():
|
| 472 |
with gr.Column(scale=1):
|
| 473 |
-
gr.Markdown("## Cohort retention of
|
|
|
|
| 474 |
cohort_retention_olas_pearl = calculate_cohort_retention(
|
| 475 |
df=retention_df, market_creator="pearl", trader_type="Olas"
|
| 476 |
)
|
|
@@ -478,34 +513,8 @@ with demo:
|
|
| 478 |
retention_matrix=cohort_retention_olas_pearl, cmap="Purples"
|
| 479 |
)
|
| 480 |
with gr.Column(scale=1):
|
| 481 |
-
gr.Markdown("## Cohort retention of
|
| 482 |
-
|
| 483 |
-
cohort_retention_non_olas_pearl = calculate_cohort_retention(
|
| 484 |
-
df=retention_df, market_creator="pearl", trader_type="non_Olas"
|
| 485 |
-
)
|
| 486 |
-
cohort_retention_plot2 = plot_cohort_retention_heatmap(
|
| 487 |
-
retention_matrix=cohort_retention_non_olas_pearl,
|
| 488 |
-
cmap=sns.color_palette("light:goldenrod", as_cmap=True),
|
| 489 |
-
)
|
| 490 |
-
with gr.Row():
|
| 491 |
-
with gr.Column(scale=1):
|
| 492 |
-
gr.Markdown("## Cohort retention of unclassified traders")
|
| 493 |
-
cohort_retention_unclassified_pearl = calculate_cohort_retention(
|
| 494 |
-
df=retention_df,
|
| 495 |
-
market_creator="pearl",
|
| 496 |
-
trader_type="unclassified",
|
| 497 |
-
)
|
| 498 |
-
cohort_retention_plot3 = plot_cohort_retention_heatmap(
|
| 499 |
-
retention_matrix=cohort_retention_unclassified_pearl,
|
| 500 |
-
cmap="Greens",
|
| 501 |
-
)
|
| 502 |
-
with gr.Column(scale=1):
|
| 503 |
-
print("Adding explanatory text")
|
| 504 |
-
with gr.Row():
|
| 505 |
-
gr.Markdown("# Cohort retention in quickstart traders")
|
| 506 |
-
with gr.Row():
|
| 507 |
-
with gr.Column(scale=1):
|
| 508 |
-
gr.Markdown("## Cohort retention of π Olas traders")
|
| 509 |
cohort_retention_olas_qs = calculate_cohort_retention(
|
| 510 |
df=retention_df, market_creator="quickstart", trader_type="Olas"
|
| 511 |
)
|
|
@@ -513,43 +522,66 @@ with demo:
|
|
| 513 |
retention_matrix=cohort_retention_olas_qs,
|
| 514 |
cmap="Purples",
|
| 515 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
with gr.Column(scale=1):
|
| 517 |
-
gr.Markdown("## Cohort retention of
|
| 518 |
-
|
| 519 |
-
cohort_retention_non_olas_qs = calculate_cohort_retention(
|
| 520 |
df=retention_df,
|
| 521 |
-
market_creator="
|
| 522 |
-
trader_type="
|
| 523 |
-
)
|
| 524 |
-
cohort_retention_plot5 = plot_cohort_retention_heatmap(
|
| 525 |
-
retention_matrix=cohort_retention_non_olas_qs,
|
| 526 |
-
cmap=sns.color_palette("light:goldenrod", as_cmap=True),
|
| 527 |
)
|
| 528 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
with gr.Column(scale=1):
|
| 530 |
-
gr.Markdown("## Cohort retention
|
| 531 |
cohort_retention_unclassified_qs = calculate_cohort_retention(
|
| 532 |
df=retention_df,
|
| 533 |
market_creator="quickstart",
|
| 534 |
trader_type="unclassified",
|
| 535 |
)
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
with gr.TabItem("βοΈ Active traders"):
|
| 543 |
with gr.Row():
|
| 544 |
gr.Markdown("# Active traders for all markets by trader categories")
|
| 545 |
with gr.Row():
|
| 546 |
-
active_traders_plot = plot_active_traders(
|
| 547 |
|
| 548 |
with gr.Row():
|
| 549 |
gr.Markdown("# Active traders for Pearl markets by trader categories")
|
| 550 |
with gr.Row():
|
| 551 |
-
|
| 552 |
-
|
| 553 |
)
|
| 554 |
|
| 555 |
with gr.Row():
|
|
@@ -557,8 +589,8 @@ with demo:
|
|
| 557 |
"# Active traders for Quickstart markets by trader categories"
|
| 558 |
)
|
| 559 |
with gr.Row():
|
| 560 |
-
|
| 561 |
-
|
| 562 |
)
|
| 563 |
|
| 564 |
with gr.TabItem("π Markets KullbackβLeibler divergence"):
|
|
@@ -581,6 +613,7 @@ with demo:
|
|
| 581 |
with gr.TabItem("π° Money invested per trader type"):
|
| 582 |
with gr.Row():
|
| 583 |
gr.Markdown("# Weekly total bet amount per trader type for all markets")
|
|
|
|
| 584 |
with gr.Row():
|
| 585 |
total_bet_amount = plot_total_bet_amount(
|
| 586 |
traders_data, market_filter="all"
|
|
@@ -607,6 +640,7 @@ with demo:
|
|
| 607 |
with gr.TabItem("π° Money invested per market"):
|
| 608 |
with gr.Row():
|
| 609 |
gr.Markdown("# Weekly bet amounts per market for all traders")
|
|
|
|
| 610 |
with gr.Row():
|
| 611 |
bet_amounts = plot_total_bet_amount_per_trader_per_market(traders_data)
|
| 612 |
|
|
@@ -637,16 +671,21 @@ with demo:
|
|
| 637 |
with gr.Row():
|
| 638 |
metrics_text = get_metrics_text()
|
| 639 |
with gr.Row():
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
# non_Olasic traders
|
| 643 |
-
with gr.Row():
|
| 644 |
-
gr.Markdown("# Weekly winning trades percentage from Non-Olas traders")
|
| 645 |
-
with gr.Row():
|
| 646 |
-
metrics_text = get_metrics_text()
|
| 647 |
-
with gr.Row():
|
| 648 |
-
winning_metric = plot_winning_metric_per_trader(
|
| 649 |
-
weekly_non_olas_winning_metrics
|
| 650 |
)
|
| 651 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 652 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 101 |
FROM read_parquet('./data/retention_activity.parquet')
|
| 102 |
"""
|
| 103 |
df5 = con.execute(query5).fetchdf()
|
| 104 |
+
|
| 105 |
+
# Query to fetch active traders data
|
| 106 |
+
query6 = f"""
|
| 107 |
+
SELECT *
|
| 108 |
+
FROM read_parquet('./data/active_traders.parquet')
|
| 109 |
+
"""
|
| 110 |
+
df6 = con.execute(query6).fetchdf()
|
| 111 |
con.close()
|
| 112 |
+
return df1, df2, df3, df4, df5, df6
|
| 113 |
|
| 114 |
|
| 115 |
def prepare_data():
|
| 116 |
|
| 117 |
+
(
|
| 118 |
+
all_trades,
|
| 119 |
+
closed_markets,
|
| 120 |
+
daily_info,
|
| 121 |
+
unknown_traders,
|
| 122 |
+
retention_df,
|
| 123 |
+
active_traders,
|
| 124 |
+
) = get_all_data()
|
| 125 |
|
| 126 |
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
|
| 127 |
|
|
|
|
| 162 |
.dt.to_period("W")
|
| 163 |
.dt.start_time.dt.strftime("%b-%d-%Y")
|
| 164 |
)
|
| 165 |
+
return (
|
| 166 |
+
traders_data,
|
| 167 |
+
closed_markets,
|
| 168 |
+
daily_info,
|
| 169 |
+
unknown_traders,
|
| 170 |
+
retention_df,
|
| 171 |
+
active_traders,
|
| 172 |
+
)
|
| 173 |
|
| 174 |
|
| 175 |
+
(
|
| 176 |
+
traders_data,
|
| 177 |
+
closed_markets,
|
| 178 |
+
daily_info,
|
| 179 |
+
unknown_traders,
|
| 180 |
+
raw_retention_df,
|
| 181 |
+
active_traders,
|
| 182 |
+
) = prepare_data()
|
| 183 |
retention_df = prepare_retention_dataset(
|
| 184 |
retention_df=raw_retention_df, unknown_df=unknown_traders
|
| 185 |
)
|
|
|
|
| 194 |
weekly_o_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
|
| 195 |
traders_data, trader_filter="Olas"
|
| 196 |
)
|
| 197 |
+
weekly_non_olas_metrics_by_market_creator = pd.DataFrame()
|
| 198 |
+
if len(traders_data.loc[traders_data["staking"] == "non_Olas"]) > 0:
|
| 199 |
+
weekly_non_olas_metrics_by_market_creator = (
|
| 200 |
+
compute_weekly_metrics_by_market_creator(traders_data, trader_filter="non_Olas")
|
| 201 |
+
)
|
| 202 |
weekly_unknown_trader_metrics_by_market_creator = None
|
| 203 |
if len(unknown_traders) > 0:
|
| 204 |
weekly_unknown_trader_metrics_by_market_creator = (
|
|
|
|
| 207 |
)
|
| 208 |
)
|
| 209 |
|
| 210 |
+
# just for all traders
|
| 211 |
+
weekly_winning_metrics = compute_winning_metrics_by_trader(
|
| 212 |
+
traders_data=traders_data, unknown_info=unknown_traders
|
| 213 |
+
)
|
| 214 |
+
weekly_winning_metrics_olas = compute_winning_metrics_by_trader(
|
| 215 |
+
traders_data=traders_data, unknown_info=unknown_traders, trader_filter="Olas"
|
| 216 |
)
|
| 217 |
+
weekly_non_olas_winning_metrics = pd.DataFrame()
|
| 218 |
+
if len(traders_data.loc[traders_data["staking"] == "non_Olas"]) > 0:
|
| 219 |
+
weekly_non_olas_winning_metrics = compute_winning_metrics_by_trader(
|
| 220 |
+
traders_data=traders_data, trader_filter="non_Olas"
|
| 221 |
+
)
|
| 222 |
|
| 223 |
with demo:
|
| 224 |
gr.HTML("<h1>Traders monitoring dashboard </h1>")
|
|
|
|
| 285 |
inputs=trader_o_details_selector,
|
| 286 |
outputs=o_trader_markets_plot,
|
| 287 |
)
|
| 288 |
+
if len(weekly_non_olas_metrics_by_market_creator) > 0:
|
| 289 |
+
# Non-Olas traders graph
|
| 290 |
+
with gr.Row():
|
| 291 |
+
gr.Markdown("# Weekly metrics of Non-Olas traders")
|
| 292 |
+
with gr.Row():
|
| 293 |
+
trader_no_details_selector = gr.Dropdown(
|
| 294 |
+
label="Select a weekly trader metric",
|
| 295 |
+
choices=trader_metric_choices,
|
| 296 |
+
value=default_trader_metric,
|
| 297 |
+
)
|
| 298 |
|
| 299 |
+
with gr.Row():
|
| 300 |
+
with gr.Column(scale=3):
|
| 301 |
+
trader_no_markets_plot = plot_trader_metrics_by_market_creator(
|
| 302 |
+
metric_name=default_trader_metric,
|
| 303 |
+
traders_df=weekly_non_olas_metrics_by_market_creator,
|
| 304 |
+
)
|
| 305 |
+
with gr.Column(scale=1):
|
| 306 |
+
trade_details_text = get_metrics_text(trader_type="non_Olas")
|
|
|
|
| 307 |
|
| 308 |
+
def update_no_trader_details(trader_detail):
|
| 309 |
+
return plot_trader_metrics_by_market_creator(
|
| 310 |
+
metric_name=trader_detail,
|
|
|
|
| 311 |
traders_df=weekly_non_olas_metrics_by_market_creator,
|
| 312 |
)
|
|
|
|
|
|
|
| 313 |
|
| 314 |
+
trader_no_details_selector.change(
|
| 315 |
+
update_no_trader_details,
|
| 316 |
+
inputs=trader_no_details_selector,
|
| 317 |
+
outputs=trader_no_markets_plot,
|
| 318 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
# Unknown traders graph
|
| 320 |
if weekly_unknown_trader_metrics_by_market_creator is not None:
|
| 321 |
with gr.Row():
|
|
|
|
| 487 |
)
|
| 488 |
|
| 489 |
with gr.Row():
|
| 490 |
+
gr.Markdown("# Cohort retention graphs")
|
| 491 |
with gr.Row():
|
| 492 |
gr.Markdown(
|
| 493 |
"The Cohort groups are organized by cohort weeks. A trader is part of a cohort group/week where it was detected the FIRST activity ever of that trader."
|
|
|
|
| 504 |
)
|
| 505 |
with gr.Row():
|
| 506 |
with gr.Column(scale=1):
|
| 507 |
+
gr.Markdown("## Cohort retention of pearl traders")
|
| 508 |
+
gr.Markdown("### Cohort retention of π Olas traders")
|
| 509 |
cohort_retention_olas_pearl = calculate_cohort_retention(
|
| 510 |
df=retention_df, market_creator="pearl", trader_type="Olas"
|
| 511 |
)
|
|
|
|
| 513 |
retention_matrix=cohort_retention_olas_pearl, cmap="Purples"
|
| 514 |
)
|
| 515 |
with gr.Column(scale=1):
|
| 516 |
+
gr.Markdown("## Cohort retention of quickstart traders")
|
| 517 |
+
gr.Markdown("### Cohort retention of π Olas traders")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 518 |
cohort_retention_olas_qs = calculate_cohort_retention(
|
| 519 |
df=retention_df, market_creator="quickstart", trader_type="Olas"
|
| 520 |
)
|
|
|
|
| 522 |
retention_matrix=cohort_retention_olas_qs,
|
| 523 |
cmap="Purples",
|
| 524 |
)
|
| 525 |
+
# # non_Olas
|
| 526 |
+
# cohort_retention_non_olas_pearl = calculate_cohort_retention(
|
| 527 |
+
# df=retention_df, market_creator="pearl", trader_type="non_Olas"
|
| 528 |
+
# )
|
| 529 |
+
# if len(cohort_retention_non_olas_pearl) > 0:
|
| 530 |
+
# gr.Markdown("## Cohort retention of Non-Olas traders")
|
| 531 |
+
# cohort_retention_plot2 = plot_cohort_retention_heatmap(
|
| 532 |
+
# retention_matrix=cohort_retention_non_olas_pearl,
|
| 533 |
+
# cmap=sns.color_palette("light:goldenrod", as_cmap=True),
|
| 534 |
+
# )
|
| 535 |
+
with gr.Row():
|
| 536 |
with gr.Column(scale=1):
|
| 537 |
+
gr.Markdown("## Cohort retention of pearl traders")
|
| 538 |
+
cohort_retention_unclassified_pearl = calculate_cohort_retention(
|
|
|
|
| 539 |
df=retention_df,
|
| 540 |
+
market_creator="pearl",
|
| 541 |
+
trader_type="unclassified",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
)
|
| 543 |
+
if len(cohort_retention_unclassified_pearl) > 0:
|
| 544 |
+
gr.Markdown("### Cohort retention of unclassified traders")
|
| 545 |
+
cohort_retention_plot3 = plot_cohort_retention_heatmap(
|
| 546 |
+
retention_matrix=cohort_retention_unclassified_pearl,
|
| 547 |
+
cmap="Greens",
|
| 548 |
+
)
|
| 549 |
with gr.Column(scale=1):
|
| 550 |
+
gr.Markdown("## Cohort retention in quickstart traders")
|
| 551 |
cohort_retention_unclassified_qs = calculate_cohort_retention(
|
| 552 |
df=retention_df,
|
| 553 |
market_creator="quickstart",
|
| 554 |
trader_type="unclassified",
|
| 555 |
)
|
| 556 |
+
if len(cohort_retention_unclassified_qs) > 0:
|
| 557 |
+
gr.Markdown("### Cohort retention of unclassified traders")
|
| 558 |
+
cohort_retention_plot6 = plot_cohort_retention_heatmap(
|
| 559 |
+
retention_matrix=cohort_retention_unclassified_qs,
|
| 560 |
+
cmap="Greens",
|
| 561 |
+
)
|
| 562 |
+
# # non_Olas
|
| 563 |
+
# cohort_retention_non_olas_qs = calculate_cohort_retention(
|
| 564 |
+
# df=retention_df,
|
| 565 |
+
# market_creator="quickstart",
|
| 566 |
+
# trader_type="non_Olas",
|
| 567 |
+
# )
|
| 568 |
+
# if len(cohort_retention_non_olas_qs) > 0:
|
| 569 |
+
# gr.Markdown("## Cohort retention of Non-Olas traders")
|
| 570 |
+
# cohort_retention_plot5 = plot_cohort_retention_heatmap(
|
| 571 |
+
# retention_matrix=cohort_retention_non_olas_qs,
|
| 572 |
+
# cmap=sns.color_palette("light:goldenrod", as_cmap=True),
|
| 573 |
+
# )
|
| 574 |
with gr.TabItem("βοΈ Active traders"):
|
| 575 |
with gr.Row():
|
| 576 |
gr.Markdown("# Active traders for all markets by trader categories")
|
| 577 |
with gr.Row():
|
| 578 |
+
active_traders_plot = plot_active_traders(active_traders)
|
| 579 |
|
| 580 |
with gr.Row():
|
| 581 |
gr.Markdown("# Active traders for Pearl markets by trader categories")
|
| 582 |
with gr.Row():
|
| 583 |
+
active_traders_plot_pearl = plot_active_traders(
|
| 584 |
+
active_traders, market_creator="pearl"
|
| 585 |
)
|
| 586 |
|
| 587 |
with gr.Row():
|
|
|
|
| 589 |
"# Active traders for Quickstart markets by trader categories"
|
| 590 |
)
|
| 591 |
with gr.Row():
|
| 592 |
+
active_traders_plot_qs = plot_active_traders(
|
| 593 |
+
active_traders, market_creator="quickstart"
|
| 594 |
)
|
| 595 |
|
| 596 |
with gr.TabItem("π Markets KullbackβLeibler divergence"):
|
|
|
|
| 613 |
with gr.TabItem("π° Money invested per trader type"):
|
| 614 |
with gr.Row():
|
| 615 |
gr.Markdown("# Weekly total bet amount per trader type for all markets")
|
| 616 |
+
gr.Markdown("## Computed only for trader agents using the mech service")
|
| 617 |
with gr.Row():
|
| 618 |
total_bet_amount = plot_total_bet_amount(
|
| 619 |
traders_data, market_filter="all"
|
|
|
|
| 640 |
with gr.TabItem("π° Money invested per market"):
|
| 641 |
with gr.Row():
|
| 642 |
gr.Markdown("# Weekly bet amounts per market for all traders")
|
| 643 |
+
gr.Markdown("## Computed only for trader agents using the mech service")
|
| 644 |
with gr.Row():
|
| 645 |
bet_amounts = plot_total_bet_amount_per_trader_per_market(traders_data)
|
| 646 |
|
|
|
|
| 671 |
with gr.Row():
|
| 672 |
metrics_text = get_metrics_text()
|
| 673 |
with gr.Row():
|
| 674 |
+
winning_metric_olas = plot_winning_metric_per_trader(
|
| 675 |
+
weekly_winning_metrics_olas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 676 |
)
|
| 677 |
|
| 678 |
+
# # non_Olas traders
|
| 679 |
+
# if len(weekly_non_olas_winning_metrics) > 0:
|
| 680 |
+
# with gr.Row():
|
| 681 |
+
# gr.Markdown(
|
| 682 |
+
# "# Weekly winning trades percentage from Non-Olas traders"
|
| 683 |
+
# )
|
| 684 |
+
# with gr.Row():
|
| 685 |
+
# metrics_text = get_metrics_text()
|
| 686 |
+
# with gr.Row():
|
| 687 |
+
# winning_metric = plot_winning_metric_per_trader(
|
| 688 |
+
# weekly_non_olas_winning_metrics
|
| 689 |
+
# )
|
| 690 |
+
|
| 691 |
demo.queue(default_concurrency_limit=40).launch()
|