Spaces:
Runtime error
Runtime error
cyberosa
commited on
Commit
Β·
e91be24
1
Parent(s):
87eca50
new weekly data for the traders
Browse files- data/unknown_daily_traders.parquet +2 -2
- data/unknown_traders.parquet +2 -2
- data/weekly_mech_calls.parquet +2 -2
- notebooks/daily_data.ipynb +42 -35
- notebooks/divergence.ipynb +156 -2
- notebooks/wow_retention.ipynb +0 -0
data/unknown_daily_traders.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1ca416d2d0eeab63185e637d4acbbd0beb6e476a8a8fd33d77bb1b6b5a25e4a
|
| 3 |
+
size 55580
|
data/unknown_traders.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c237838416f8339b145719e5b370df1d9763099f9e5fa3e75d4d69053e5d311
|
| 3 |
+
size 200722
|
data/weekly_mech_calls.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcaf2cf4955d8bf73727d2e83aa959fe69b6ac99be801008d724b4810eea9c5f
|
| 3 |
+
size 50599
|
notebooks/daily_data.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
@@ -11,7 +11,7 @@
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
-
"execution_count":
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [],
|
| 17 |
"source": [
|
|
@@ -20,7 +20,7 @@
|
|
| 20 |
},
|
| 21 |
{
|
| 22 |
"cell_type": "code",
|
| 23 |
-
"execution_count":
|
| 24 |
"metadata": {},
|
| 25 |
"outputs": [
|
| 26 |
{
|
|
@@ -31,11 +31,11 @@
|
|
| 31 |
" 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
|
| 32 |
" 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
|
| 33 |
" 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
|
| 34 |
-
" 'roi', 'staking'
|
| 35 |
" dtype='object')"
|
| 36 |
]
|
| 37 |
},
|
| 38 |
-
"execution_count":
|
| 39 |
"metadata": {},
|
| 40 |
"output_type": "execute_result"
|
| 41 |
}
|
|
@@ -44,6 +44,13 @@
|
|
| 44 |
"all_trades.columns"
|
| 45 |
]
|
| 46 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
{
|
| 48 |
"cell_type": "code",
|
| 49 |
"execution_count": 32,
|
|
@@ -624,7 +631,7 @@
|
|
| 624 |
},
|
| 625 |
{
|
| 626 |
"cell_type": "code",
|
| 627 |
-
"execution_count":
|
| 628 |
"metadata": {},
|
| 629 |
"outputs": [],
|
| 630 |
"source": [
|
|
@@ -633,7 +640,7 @@
|
|
| 633 |
},
|
| 634 |
{
|
| 635 |
"cell_type": "code",
|
| 636 |
-
"execution_count":
|
| 637 |
"metadata": {},
|
| 638 |
"outputs": [
|
| 639 |
{
|
|
@@ -641,33 +648,33 @@
|
|
| 641 |
"output_type": "stream",
|
| 642 |
"text": [
|
| 643 |
"<class 'pandas.core.frame.DataFrame'>\n",
|
| 644 |
-
"RangeIndex:
|
| 645 |
"Data columns (total 21 columns):\n",
|
| 646 |
" # Column Non-Null Count Dtype \n",
|
| 647 |
"--- ------ -------------- ----- \n",
|
| 648 |
-
" 0 trader_address
|
| 649 |
-
" 1 market_creator
|
| 650 |
-
" 2 trade_id
|
| 651 |
-
" 3 creation_timestamp
|
| 652 |
-
" 4 title
|
| 653 |
-
" 5 market_status
|
| 654 |
-
" 6 collateral_amount
|
| 655 |
-
" 7 outcome_index
|
| 656 |
-
" 8 trade_fee_amount
|
| 657 |
-
" 9 outcomes_tokens_traded
|
| 658 |
-
" 10 current_answer
|
| 659 |
-
" 11 is_invalid
|
| 660 |
-
" 12 winning_trade
|
| 661 |
-
" 13 earnings
|
| 662 |
-
" 14 redeemed
|
| 663 |
-
" 15 redeemed_amount
|
| 664 |
-
" 16 num_mech_calls
|
| 665 |
-
" 17 mech_fee_amount
|
| 666 |
-
" 18 net_earnings
|
| 667 |
-
" 19 roi
|
| 668 |
-
" 20 staking
|
| 669 |
-
"dtypes: bool(2), datetime64[ns, UTC](1), float64(8), int64(
|
| 670 |
-
"memory usage: 1.
|
| 671 |
]
|
| 672 |
}
|
| 673 |
],
|
|
@@ -703,22 +710,22 @@
|
|
| 703 |
},
|
| 704 |
{
|
| 705 |
"cell_type": "code",
|
| 706 |
-
"execution_count":
|
| 707 |
"metadata": {},
|
| 708 |
"outputs": [
|
| 709 |
{
|
| 710 |
"data": {
|
| 711 |
"text/plain": [
|
| 712 |
-
"Timestamp('
|
| 713 |
]
|
| 714 |
},
|
| 715 |
-
"execution_count":
|
| 716 |
"metadata": {},
|
| 717 |
"output_type": "execute_result"
|
| 718 |
}
|
| 719 |
],
|
| 720 |
"source": [
|
| 721 |
-
"
|
| 722 |
]
|
| 723 |
},
|
| 724 |
{
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [],
|
| 8 |
"source": [
|
|
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
+
"execution_count": 2,
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [],
|
| 17 |
"source": [
|
|
|
|
| 20 |
},
|
| 21 |
{
|
| 22 |
"cell_type": "code",
|
| 23 |
+
"execution_count": 3,
|
| 24 |
"metadata": {},
|
| 25 |
"outputs": [
|
| 26 |
{
|
|
|
|
| 31 |
" 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
|
| 32 |
" 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
|
| 33 |
" 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
|
| 34 |
+
" 'roi', 'staking'],\n",
|
| 35 |
" dtype='object')"
|
| 36 |
]
|
| 37 |
},
|
| 38 |
+
"execution_count": 3,
|
| 39 |
"metadata": {},
|
| 40 |
"output_type": "execute_result"
|
| 41 |
}
|
|
|
|
| 44 |
"all_trades.columns"
|
| 45 |
]
|
| 46 |
},
|
| 47 |
+
{
|
| 48 |
+
"cell_type": "code",
|
| 49 |
+
"execution_count": null,
|
| 50 |
+
"metadata": {},
|
| 51 |
+
"outputs": [],
|
| 52 |
+
"source": []
|
| 53 |
+
},
|
| 54 |
{
|
| 55 |
"cell_type": "code",
|
| 56 |
"execution_count": 32,
|
|
|
|
| 631 |
},
|
| 632 |
{
|
| 633 |
"cell_type": "code",
|
| 634 |
+
"execution_count": 4,
|
| 635 |
"metadata": {},
|
| 636 |
"outputs": [],
|
| 637 |
"source": [
|
|
|
|
| 640 |
},
|
| 641 |
{
|
| 642 |
"cell_type": "code",
|
| 643 |
+
"execution_count": 5,
|
| 644 |
"metadata": {},
|
| 645 |
"outputs": [
|
| 646 |
{
|
|
|
|
| 648 |
"output_type": "stream",
|
| 649 |
"text": [
|
| 650 |
"<class 'pandas.core.frame.DataFrame'>\n",
|
| 651 |
+
"RangeIndex: 7104 entries, 0 to 7103\n",
|
| 652 |
"Data columns (total 21 columns):\n",
|
| 653 |
" # Column Non-Null Count Dtype \n",
|
| 654 |
"--- ------ -------------- ----- \n",
|
| 655 |
+
" 0 trader_address 7104 non-null object \n",
|
| 656 |
+
" 1 market_creator 7104 non-null object \n",
|
| 657 |
+
" 2 trade_id 7104 non-null object \n",
|
| 658 |
+
" 3 creation_timestamp 7104 non-null datetime64[ns, UTC]\n",
|
| 659 |
+
" 4 title 7104 non-null object \n",
|
| 660 |
+
" 5 market_status 7104 non-null object \n",
|
| 661 |
+
" 6 collateral_amount 7104 non-null float64 \n",
|
| 662 |
+
" 7 outcome_index 7104 non-null object \n",
|
| 663 |
+
" 8 trade_fee_amount 7104 non-null float64 \n",
|
| 664 |
+
" 9 outcomes_tokens_traded 7104 non-null float64 \n",
|
| 665 |
+
" 10 current_answer 0 non-null object \n",
|
| 666 |
+
" 11 is_invalid 7104 non-null bool \n",
|
| 667 |
+
" 12 winning_trade 0 non-null object \n",
|
| 668 |
+
" 13 earnings 7104 non-null float64 \n",
|
| 669 |
+
" 14 redeemed 7104 non-null bool \n",
|
| 670 |
+
" 15 redeemed_amount 7104 non-null float64 \n",
|
| 671 |
+
" 16 num_mech_calls 7104 non-null int64 \n",
|
| 672 |
+
" 17 mech_fee_amount 7104 non-null float64 \n",
|
| 673 |
+
" 18 net_earnings 7104 non-null float64 \n",
|
| 674 |
+
" 19 roi 7104 non-null float64 \n",
|
| 675 |
+
" 20 staking 7104 non-null object \n",
|
| 676 |
+
"dtypes: bool(2), datetime64[ns, UTC](1), float64(8), int64(1), object(9)\n",
|
| 677 |
+
"memory usage: 1.0+ MB\n"
|
| 678 |
]
|
| 679 |
}
|
| 680 |
],
|
|
|
|
| 710 |
},
|
| 711 |
{
|
| 712 |
"cell_type": "code",
|
| 713 |
+
"execution_count": 7,
|
| 714 |
"metadata": {},
|
| 715 |
"outputs": [
|
| 716 |
{
|
| 717 |
"data": {
|
| 718 |
"text/plain": [
|
| 719 |
+
"Timestamp('2025-01-07 09:01:05+0000', tz='UTC')"
|
| 720 |
]
|
| 721 |
},
|
| 722 |
+
"execution_count": 7,
|
| 723 |
"metadata": {},
|
| 724 |
"output_type": "execute_result"
|
| 725 |
}
|
| 726 |
],
|
| 727 |
"source": [
|
| 728 |
+
"min(all_trades_before.creation_timestamp)"
|
| 729 |
]
|
| 730 |
},
|
| 731 |
{
|
notebooks/divergence.ipynb
CHANGED
|
@@ -9,7 +9,7 @@
|
|
| 9 |
"name": "stderr",
|
| 10 |
"output_type": "stream",
|
| 11 |
"text": [
|
| 12 |
-
"/Users/cyberosa/.pyenv/versions/hf_dashboards/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 13 |
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 14 |
]
|
| 15 |
}
|
|
@@ -26,13 +26,167 @@
|
|
| 26 |
},
|
| 27 |
{
|
| 28 |
"cell_type": "code",
|
| 29 |
-
"execution_count":
|
| 30 |
"metadata": {},
|
| 31 |
"outputs": [],
|
| 32 |
"source": [
|
| 33 |
"div_data = pd.read_parquet(\"../data/closed_markets_div.parquet\")"
|
| 34 |
]
|
| 35 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
{
|
| 37 |
"cell_type": "code",
|
| 38 |
"execution_count": 8,
|
|
|
|
| 9 |
"name": "stderr",
|
| 10 |
"output_type": "stream",
|
| 11 |
"text": [
|
| 12 |
+
"/Users/cyberosa/.pyenv/versions/3.12.2/envs/hf_dashboards/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 13 |
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 14 |
]
|
| 15 |
}
|
|
|
|
| 26 |
},
|
| 27 |
{
|
| 28 |
"cell_type": "code",
|
| 29 |
+
"execution_count": 3,
|
| 30 |
"metadata": {},
|
| 31 |
"outputs": [],
|
| 32 |
"source": [
|
| 33 |
"div_data = pd.read_parquet(\"../data/closed_markets_div.parquet\")"
|
| 34 |
]
|
| 35 |
},
|
| 36 |
+
{
|
| 37 |
+
"cell_type": "code",
|
| 38 |
+
"execution_count": 4,
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [
|
| 41 |
+
{
|
| 42 |
+
"data": {
|
| 43 |
+
"text/html": [
|
| 44 |
+
"<div>\n",
|
| 45 |
+
"<style scoped>\n",
|
| 46 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 47 |
+
" vertical-align: middle;\n",
|
| 48 |
+
" }\n",
|
| 49 |
+
"\n",
|
| 50 |
+
" .dataframe tbody tr th {\n",
|
| 51 |
+
" vertical-align: top;\n",
|
| 52 |
+
" }\n",
|
| 53 |
+
"\n",
|
| 54 |
+
" .dataframe thead th {\n",
|
| 55 |
+
" text-align: right;\n",
|
| 56 |
+
" }\n",
|
| 57 |
+
"</style>\n",
|
| 58 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 59 |
+
" <thead>\n",
|
| 60 |
+
" <tr style=\"text-align: right;\">\n",
|
| 61 |
+
" <th></th>\n",
|
| 62 |
+
" <th>currentAnswer</th>\n",
|
| 63 |
+
" <th>id</th>\n",
|
| 64 |
+
" <th>openingTimestamp</th>\n",
|
| 65 |
+
" <th>market_creator</th>\n",
|
| 66 |
+
" <th>opening_datetime</th>\n",
|
| 67 |
+
" <th>first_outcome_prob</th>\n",
|
| 68 |
+
" <th>second_outcome_prob</th>\n",
|
| 69 |
+
" <th>kl_divergence</th>\n",
|
| 70 |
+
" <th>off_by_perc</th>\n",
|
| 71 |
+
" </tr>\n",
|
| 72 |
+
" </thead>\n",
|
| 73 |
+
" <tbody>\n",
|
| 74 |
+
" <tr>\n",
|
| 75 |
+
" <th>0</th>\n",
|
| 76 |
+
" <td>yes</td>\n",
|
| 77 |
+
" <td>0x5cae41dcc8a30d76a31b126c6f3b358b8d0131ca</td>\n",
|
| 78 |
+
" <td>1731542400</td>\n",
|
| 79 |
+
" <td>quickstart</td>\n",
|
| 80 |
+
" <td>2024-11-14 01:00:00</td>\n",
|
| 81 |
+
" <td>0.3679</td>\n",
|
| 82 |
+
" <td>0.6321</td>\n",
|
| 83 |
+
" <td>0.999944</td>\n",
|
| 84 |
+
" <td>63.21</td>\n",
|
| 85 |
+
" </tr>\n",
|
| 86 |
+
" <tr>\n",
|
| 87 |
+
" <th>1</th>\n",
|
| 88 |
+
" <td>yes</td>\n",
|
| 89 |
+
" <td>0xf8442bd26cd80d8447bb6203ededc44a77cd2a12</td>\n",
|
| 90 |
+
" <td>1731542400</td>\n",
|
| 91 |
+
" <td>quickstart</td>\n",
|
| 92 |
+
" <td>2024-11-14 01:00:00</td>\n",
|
| 93 |
+
" <td>0.3368</td>\n",
|
| 94 |
+
" <td>0.6632</td>\n",
|
| 95 |
+
" <td>1.088266</td>\n",
|
| 96 |
+
" <td>66.32</td>\n",
|
| 97 |
+
" </tr>\n",
|
| 98 |
+
" <tr>\n",
|
| 99 |
+
" <th>2</th>\n",
|
| 100 |
+
" <td>yes</td>\n",
|
| 101 |
+
" <td>0xde3a4b0d527013165b1b6b8aae051d223f8b770e</td>\n",
|
| 102 |
+
" <td>1731542400</td>\n",
|
| 103 |
+
" <td>quickstart</td>\n",
|
| 104 |
+
" <td>2024-11-14 01:00:00</td>\n",
|
| 105 |
+
" <td>0.4468</td>\n",
|
| 106 |
+
" <td>0.5532</td>\n",
|
| 107 |
+
" <td>0.805644</td>\n",
|
| 108 |
+
" <td>55.32</td>\n",
|
| 109 |
+
" </tr>\n",
|
| 110 |
+
" <tr>\n",
|
| 111 |
+
" <th>3</th>\n",
|
| 112 |
+
" <td>yes</td>\n",
|
| 113 |
+
" <td>0xccadef7757659ce271b209d647c2a51fabd88c77</td>\n",
|
| 114 |
+
" <td>1731542400</td>\n",
|
| 115 |
+
" <td>quickstart</td>\n",
|
| 116 |
+
" <td>2024-11-14 01:00:00</td>\n",
|
| 117 |
+
" <td>0.6804</td>\n",
|
| 118 |
+
" <td>0.3196</td>\n",
|
| 119 |
+
" <td>0.385074</td>\n",
|
| 120 |
+
" <td>31.96</td>\n",
|
| 121 |
+
" </tr>\n",
|
| 122 |
+
" <tr>\n",
|
| 123 |
+
" <th>4</th>\n",
|
| 124 |
+
" <td>no</td>\n",
|
| 125 |
+
" <td>0x78d0fc5884e74d87b0529e40da2b9490db60e731</td>\n",
|
| 126 |
+
" <td>1731628800</td>\n",
|
| 127 |
+
" <td>quickstart</td>\n",
|
| 128 |
+
" <td>2024-11-15 01:00:00</td>\n",
|
| 129 |
+
" <td>0.2358</td>\n",
|
| 130 |
+
" <td>0.7642</td>\n",
|
| 131 |
+
" <td>0.268926</td>\n",
|
| 132 |
+
" <td>23.58</td>\n",
|
| 133 |
+
" </tr>\n",
|
| 134 |
+
" </tbody>\n",
|
| 135 |
+
"</table>\n",
|
| 136 |
+
"</div>"
|
| 137 |
+
],
|
| 138 |
+
"text/plain": [
|
| 139 |
+
" currentAnswer id openingTimestamp \\\n",
|
| 140 |
+
"0 yes 0x5cae41dcc8a30d76a31b126c6f3b358b8d0131ca 1731542400 \n",
|
| 141 |
+
"1 yes 0xf8442bd26cd80d8447bb6203ededc44a77cd2a12 1731542400 \n",
|
| 142 |
+
"2 yes 0xde3a4b0d527013165b1b6b8aae051d223f8b770e 1731542400 \n",
|
| 143 |
+
"3 yes 0xccadef7757659ce271b209d647c2a51fabd88c77 1731542400 \n",
|
| 144 |
+
"4 no 0x78d0fc5884e74d87b0529e40da2b9490db60e731 1731628800 \n",
|
| 145 |
+
"\n",
|
| 146 |
+
" market_creator opening_datetime first_outcome_prob second_outcome_prob \\\n",
|
| 147 |
+
"0 quickstart 2024-11-14 01:00:00 0.3679 0.6321 \n",
|
| 148 |
+
"1 quickstart 2024-11-14 01:00:00 0.3368 0.6632 \n",
|
| 149 |
+
"2 quickstart 2024-11-14 01:00:00 0.4468 0.5532 \n",
|
| 150 |
+
"3 quickstart 2024-11-14 01:00:00 0.6804 0.3196 \n",
|
| 151 |
+
"4 quickstart 2024-11-15 01:00:00 0.2358 0.7642 \n",
|
| 152 |
+
"\n",
|
| 153 |
+
" kl_divergence off_by_perc \n",
|
| 154 |
+
"0 0.999944 63.21 \n",
|
| 155 |
+
"1 1.088266 66.32 \n",
|
| 156 |
+
"2 0.805644 55.32 \n",
|
| 157 |
+
"3 0.385074 31.96 \n",
|
| 158 |
+
"4 0.268926 23.58 "
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
"execution_count": 4,
|
| 162 |
+
"metadata": {},
|
| 163 |
+
"output_type": "execute_result"
|
| 164 |
+
}
|
| 165 |
+
],
|
| 166 |
+
"source": [
|
| 167 |
+
"div_data.head()"
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"cell_type": "code",
|
| 172 |
+
"execution_count": 5,
|
| 173 |
+
"metadata": {},
|
| 174 |
+
"outputs": [
|
| 175 |
+
{
|
| 176 |
+
"data": {
|
| 177 |
+
"text/plain": [
|
| 178 |
+
"Timestamp('2024-12-28 01:00:00')"
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
"execution_count": 5,
|
| 182 |
+
"metadata": {},
|
| 183 |
+
"output_type": "execute_result"
|
| 184 |
+
}
|
| 185 |
+
],
|
| 186 |
+
"source": [
|
| 187 |
+
"max(div_data.opening_datetime)"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
{
|
| 191 |
"cell_type": "code",
|
| 192 |
"execution_count": 8,
|
notebooks/wow_retention.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|