Spaces:
Sleeping
Sleeping
File size: 14,936 Bytes
4ce176f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import gradio as gr
import subprocess
import os
import sys
import torch
import gc
import numpy as np
from PIL import Image
import imageio
from base64 import b64encode
# Globals for model loaders and flags
unet_loader = None
clip_loader = None
clip_encode_positive = None
clip_encode_negative = None
vae_loader = None
empty_latent_video = None
ksampler = None
vae_decode = None
save_webp = None
save_webm = None
useQ6 = False
# -------------------------
# 1. Environment Setup
# -------------------------
def environment_setup(use_q6: bool):
global useQ6
useQ6 = use_q6
setup_cmds = [
"pip install torch==2.6.0 torchvision==0.21.0 -q",
"pip install torchsde einops diffusers accelerate xformers==0.0.29.post2 -q",
"pip install av -q",
"apt -y install aria2 ffmpeg -qq"
]
output = []
for cmd in setup_cmds:
output.append(f"Running: {cmd}")
proc = subprocess.run(cmd, shell=True, capture_output=True, text=True)
output.append(proc.stdout)
output.append(proc.stderr)
if not os.path.isdir("/content/ComfyUI"):
output.append("Cloning ComfyUI repo...")
proc = subprocess.run("git clone https://github.com/Isi-dev/ComfyUI /content/ComfyUI", shell=True, capture_output=True, text=True)
output.append(proc.stdout + proc.stderr)
else:
output.append("ComfyUI repo already exists")
# Clone custom nodes repo
if not os.path.isdir("/content/ComfyUI/custom_nodes/ComfyUI_GGUF"):
output.append("Cloning ComfyUI_GGUF repo...")
proc = subprocess.run("cd /content/ComfyUI/custom_nodes && git clone https://github.com/Isi-dev/ComfyUI_GGUF.git", shell=True, capture_output=True, text=True)
output.append(proc.stdout + proc.stderr)
# Install requirements
proc = subprocess.run("pip install -r /content/ComfyUI/custom_nodes/ComfyUI_GGUF/requirements.txt", shell=True, capture_output=True, text=True)
output.append(proc.stdout + proc.stderr)
else:
output.append("ComfyUI_GGUF repo already exists")
# Ensure model directories exist
model_unet_dir = "/content/ComfyUI/models/unet"
text_enc_dir = "/content/ComfyUI/models/text_encoders"
vae_dir = "/content/ComfyUI/models/vae"
os.makedirs(model_unet_dir, exist_ok=True)
os.makedirs(text_enc_dir, exist_ok=True)
os.makedirs(vae_dir, exist_ok=True)
# Download models based on useQ6
if useQ6:
model_url = "https://huggingface.co/city96/Wan2.1-T2V-14B-gguf/resolve/main/wan2.1-t2v-14b-Q6_K.gguf"
model_name = "wan2.1-t2v-14b-Q6_K.gguf"
else:
model_url = "https://huggingface.co/city96/Wan2.1-T2V-14B-gguf/resolve/main/wan2.1-t2v-14b-Q5_0.gguf"
model_name = "wan2.1-t2v-14b-Q5_0.gguf"
aria2_cmd = f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M {model_url} -d {model_unet_dir} -o {model_name}"
output.append(f"Downloading UNet model: {model_name}")
proc = subprocess.run(aria2_cmd, shell=True, capture_output=True, text=True)
output.append(proc.stdout + proc.stderr)
# Download text encoder and VAE
te_url = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors"
vae_url = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/vae/wan_2.1_vae.safetensors"
aria2_te_cmd = f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M {te_url} -d {text_enc_dir} -o umt5_xxl_fp8_e4m3fn_scaled.safetensors"
aria2_vae_cmd = f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M {vae_url} -d {vae_dir} -o wan_2.1_vae.safetensors"
output.append("Downloading text encoder...")
proc = subprocess.run(aria2_te_cmd, shell=True, capture_output=True, text=True)
output.append(proc.stdout + proc.stderr)
output.append("Downloading VAE...")
proc = subprocess.run(aria2_vae_cmd, shell=True, capture_output=True, text=True)
output.append(proc.stdout + proc.stderr)
return "\n".join(output)
# -------------------------
# 2. Imports & Initialization
# -------------------------
def imports_initialization():
global unet_loader, clip_loader, clip_encode_positive, clip_encode_negative
global vae_loader, empty_latent_video, ksampler, vae_decode, save_webp, save_webm
import sys
sys.path.insert(0, '/content/ComfyUI')
from comfy import model_management
from nodes import (
CheckpointLoaderSimple,
CLIPLoader,
CLIPTextEncode,
VAEDecode,
VAELoader,
KSampler,
UNETLoader
)
from custom_nodes.ComfyUI_GGUF.nodes import UnetLoaderGGUF
from comfy_extras.nodes_model_advanced import ModelSamplingSD3
from comfy_extras.nodes_hunyuan import EmptyHunyuanLatentVideo
from comfy_extras.nodes_images import SaveAnimatedWEBP
from comfy_extras.nodes_video import SaveWEBM
unet_loader = UnetLoaderGGUF()
clip_loader = CLIPLoader()
clip_encode_positive = CLIPTextEncode()
clip_encode_negative = CLIPTextEncode()
vae_loader = VAELoader()
empty_latent_video = EmptyHunyuanLatentVideo()
ksampler = KSampler()
vae_decode = VAEDecode()
save_webp = SaveAnimatedWEBP()
save_webm = SaveWEBM()
return "Imports done and models initialized."
# -------------------------
# 3. Utility Functions
# -------------------------
def clear_memory():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
for obj in list(globals().values()):
if torch.is_tensor(obj) or (hasattr(obj, "data") and torch.is_tensor(obj.data)):
del obj
gc.collect()
def save_as_mp4(images, filename_prefix, fps, output_dir="/content/ComfyUI/output"):
os.makedirs(output_dir, exist_ok=True)
output_path = f"{output_dir}/{filename_prefix}.mp4"
frames = [(img.cpu().numpy() * 255).astype(np.uint8) for img in images]
with imageio.get_writer(output_path, fps=fps) as writer:
for frame in frames:
writer.append_data(frame)
return output_path
def save_as_webp(images, filename_prefix, fps, quality=90, lossless=False, method=4, output_dir="/content/ComfyUI/output"):
os.makedirs(output_dir, exist_ok=True)
output_path = f"{output_dir}/{filename_prefix}.webp"
frames = [(img.cpu().numpy() * 255).astype(np.uint8) for img in images]
kwargs = {'fps': int(fps), 'quality': int(quality), 'lossless': bool(lossless), 'method': int(method)}
with imageio.get_writer(output_path, format='WEBP', mode='I', **kwargs) as writer:
for frame in frames:
writer.append_data(frame)
return output_path
def save_as_webm(images, filename_prefix, fps, codec="vp9", quality=32, output_dir="/content/ComfyUI/output"):
os.makedirs(output_dir, exist_ok=True)
output_path = f"{output_dir}/{filename_prefix}.webm"
frames = [(img.cpu().numpy() * 255).astype(np.uint8) for img in images]
kwargs = {'fps': int(fps), 'quality': int(quality), 'codec': str(codec), 'output_params': ['-crf', str(int(quality))]}
with imageio.get_writer(output_path, format='FFMPEG', mode='I', **kwargs) as writer:
for frame in frames:
writer.append_data(frame)
return output_path
def save_as_image(image, filename_prefix, output_dir="/content/ComfyUI/output"):
os.makedirs(output_dir, exist_ok=True)
output_path = f"{output_dir}/{filename_prefix}.png"
frame = (image.cpu().numpy() * 255).astype(np.uint8)
Image.fromarray(frame).save(output_path)
return output_path
def display_video_gradio(video_path):
# Returns video path for Gradio video component, no HTML needed.
return video_path
# -------------------------
# 4. Generation Function
# -------------------------
def generate_video(
positive_prompt,
negative_prompt,
width,
height,
seed,
steps,
cfg_scale,
sampler_name,
scheduler,
frames,
fps,
output_format
):
global useQ6
with torch.inference_mode():
log = []
log.append("Loading Text_Encoder...")
clip = clip_loader.load_clip("umt5_xxl_fp8_e4m3fn_scaled.safetensors", "wan", "default")[0]
positive = clip_encode_positive.encode(clip, positive_prompt)[0]
negative = clip_encode_negative.encode(clip, negative_prompt)[0]
del clip
torch.cuda.empty_cache()
gc.collect()
empty_latent = empty_latent_video.generate(width, height, frames, 1)[0]
log.append("Loading Unet Model...")
if useQ6:
model = unet_loader.load_unet("wan2.1-t2v-14b-Q6_K.gguf")[0]
else:
model = unet_loader.load_unet("wan2.1-t2v-14b-Q5_0.gguf")[0]
log.append("Generating video...")
sampled = ksampler.sample(
model=model,
seed=seed,
steps=steps,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler,
positive=positive,
negative=negative,
latent_image=empty_latent
)[0]
del model
torch.cuda.empty_cache()
gc.collect()
log.append("Loading VAE...")
vae = vae_loader.load_vae("wan_2.1_vae.safetensors")[0]
output_path = ""
try:
log.append("Decoding latents...")
decoded = vae_decode.decode(vae, sampled)[0]
del vae
torch.cuda.empty_cache()
gc.collect()
if frames == 1:
log.append("Single frame - saving as PNG image...")
output_path = save_as_image(decoded[0], "ComfyUI")
else:
if output_format.lower() == "webm":
log.append("Saving as WEBM...")
output_path = save_as_webm(decoded, "ComfyUI", fps=fps, codec="vp9", quality=10)
elif output_format.lower() == "mp4":
log.append("Saving as MP4...")
output_path = save_as_mp4(decoded, "ComfyUI", fps)
else:
log.append(f"Unsupported output format: {output_format}")
return "\n".join(log), None
except Exception as e:
log.append(f"Error: {str(e)}")
return "\n".join(log), None
finally:
clear_memory()
return "\n".join(log), output_path
# -------------------------
# 5. Run Example (with default/custom params)
# -------------------------
def generate_video_example():
params = {
'positive_prompt': "lion",
'negative_prompt': "Bright tones, overexposure, static, blurry details, subtitles, artistic style, artwork, painting, still image, dull overall, worst quality, low quality, JPEG compression artifacts, ugly, deformed, extra fingers, poorly drawn hands, poorly drawn face, disfigured, malformed limbs, finger fusion, static frame, messy background, three legs, crowded background, walking backwards",
'width': 400,
'height': 400,
'seed': 82628696717258,
'steps': 10,
'cfg_scale': 3,
'sampler_name': "uni_pc",
'scheduler': "normal",
'frames': 2,
'fps': 10,
'output_format': "webm",
}
return generate_video(**params)
# -----------------------------------
# GRADIO INTERFACE SETUP
# -----------------------------------
with gr.Blocks() as demo:
gr.Markdown("# ComfyUI Video/Image Generation with Gradio (Colab T4 GPU)")
with gr.Tab("1. Environment Setup"):
q6_checkbox = gr.Checkbox(label="Use Q6 model (else Q5)", value=False)
env_out = gr.Textbox(label="Setup Log", lines=15, interactive=False)
env_button = gr.Button("Run Environment Setup")
env_button.click(fn=environment_setup, inputs=q6_checkbox, outputs=env_out)
with gr.Tab("2. Imports & Initialization"):
init_button = gr.Button("Initialize Imports and Models")
init_out = gr.Textbox(label="Initialization Status", interactive=False)
init_button.click(fn=imports_initialization, inputs=None, outputs=init_out)
with gr.Tab("4. Generate Video/Image"):
with gr.Row():
pos_prompt = gr.Textbox(label="Positive Prompt", value="lion")
neg_prompt = gr.Textbox(label="Negative Prompt", value="Bright tones, overexposure, static, blurry details, subtitles, artistic style, artwork, painting, still image, dull overall, worst quality, low quality, JPEG compression artifacts, ugly, deformed, extra fingers, poorly drawn hands, poorly drawn face, disfigured, malformed limbs, finger fusion, static frame, messy background, three legs, crowded background, walking backwards")
with gr.Row():
width_slider = gr.Slider(64, 1024, value=400, step=8, label="Width")
height_slider = gr.Slider(64, 1024, value=400, step=8, label="Height")
with gr.Row():
seed_num = gr.Number(value=82628696717258, label="Seed")
steps_slider = gr.Slider(1, 100, value=10, step=1, label="Steps")
cfg_slider = gr.Slider(1, 20, value=3, step=0.1, label="CFG Scale")
with gr.Row():
sampler_dropdown = gr.Dropdown(choices=["uni_pc", "euler", "dpmpp_2m", "ddim", "lms"], value="uni_pc", label="Sampler")
scheduler_dropdown = gr.Dropdown(choices=["simple", "normal", "karras", "exponential"], value="normal", label="Scheduler")
with gr.Row():
frames_slider = gr.Slider(1, 120, value=2, step=1, label="Frames")
fps_slider = gr.Slider(1, 60, value=10, step=1, label="FPS")
output_format_radio = gr.Radio(choices=["mp4", "webm"], value="webm", label="Output Format")
gen_button = gr.Button("Generate")
gen_log = gr.Textbox(label="Generation Log", lines=15, interactive=False)
gen_video = gr.Video(label="Output Video/Image")
gen_button.click(
fn=generate_video,
inputs=[
pos_prompt, neg_prompt, width_slider, height_slider,
seed_num, steps_slider, cfg_slider, sampler_dropdown,
scheduler_dropdown, frames_slider, fps_slider, output_format_radio
],
outputs=[gen_log, gen_video]
)
with gr.Tab("5. Run Example"):
example_button = gr.Button("Run Example Generation")
example_log = gr.Textbox(label="Example Run Log", lines=15, interactive=False)
example_video = gr.Video(label="Example Output")
example_button.click(
fn=generate_video_example,
inputs=None,
outputs=[example_log, example_video]
)
with gr.Tab("3. Utility Functions"):
gr.Markdown(
"""
Utility functions like clearing memory and saving files are used internally in this app.
""")
# Launch app
if __name__ == "__main__":
demo.launch(share=True) |