Spaces:
Runtime error
Runtime error
| # Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # | |
| # This work is made available under the Nvidia Source Code License-NC. | |
| # To view a copy of this license, check out LICENSE.md | |
| import torch | |
| from torch import nn | |
| from torch.utils.checkpoint import checkpoint | |
| from imaginaire.third_party.upfirdn2d import BlurDownsample, BlurUpsample | |
| from .conv import Conv2dBlock | |
| class _BaseDeepResBlock(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size, | |
| stride, padding, dilation, groups, bias, padding_mode, | |
| weight_norm_type, weight_norm_params, | |
| activation_norm_type, activation_norm_params, | |
| skip_activation_norm, skip_nonlinearity, | |
| nonlinearity, inplace_nonlinearity, apply_noise, | |
| hidden_channels_equal_out_channels, | |
| order, block, learn_shortcut, output_scale, skip_block=None, | |
| blur=True, border_free=True, resample_first=True, | |
| skip_weight_norm=True, hidden_channel_ratio=4): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.output_scale = output_scale | |
| self.resample_first = resample_first | |
| self.stride = stride | |
| self.blur = blur | |
| self.border_free = border_free | |
| assert not border_free | |
| if skip_block is None: | |
| skip_block = block | |
| if order == 'pre_act': | |
| order = 'NACNAC' | |
| if isinstance(bias, bool): | |
| # The bias for conv_block_0, conv_block_1, and conv_block_s. | |
| biases = [bias, bias, bias] | |
| elif isinstance(bias, list): | |
| if len(bias) == 3: | |
| biases = bias | |
| else: | |
| raise ValueError('Bias list must be 3.') | |
| else: | |
| raise ValueError('Bias must be either an integer or s list.') | |
| self.learn_shortcut = learn_shortcut | |
| if len(order) > 6 or len(order) < 5: | |
| raise ValueError('order must be either 5 or 6 characters') | |
| hidden_channels = in_channels // hidden_channel_ratio | |
| # Parameters. | |
| residual_params = {} | |
| shortcut_params = {} | |
| base_params = dict(dilation=dilation, | |
| groups=groups, | |
| padding_mode=padding_mode) | |
| residual_params.update(base_params) | |
| residual_params.update( | |
| dict(activation_norm_type=activation_norm_type, | |
| activation_norm_params=activation_norm_params, | |
| weight_norm_type=weight_norm_type, | |
| weight_norm_params=weight_norm_params, | |
| apply_noise=apply_noise) | |
| ) | |
| shortcut_params.update(base_params) | |
| shortcut_params.update(dict(kernel_size=1)) | |
| if skip_activation_norm: | |
| shortcut_params.update( | |
| dict(activation_norm_type=activation_norm_type, | |
| activation_norm_params=activation_norm_params, | |
| apply_noise=False)) | |
| if skip_weight_norm: | |
| shortcut_params.update( | |
| dict(weight_norm_type=weight_norm_type, | |
| weight_norm_params=weight_norm_params)) | |
| # Residual branch. | |
| if order.find('A') < order.find('C') and \ | |
| (activation_norm_type == '' or activation_norm_type == 'none'): | |
| # Nonlinearity is the first operation in the residual path. | |
| # In-place nonlinearity will modify the input variable and cause | |
| # backward error. | |
| first_inplace = False | |
| else: | |
| first_inplace = inplace_nonlinearity | |
| (first_stride, second_stride, shortcut_stride, | |
| first_blur, second_blur, shortcut_blur) = self._get_stride_blur() | |
| self.conv_block_1x1_in = block( | |
| in_channels, hidden_channels, | |
| 1, 1, 0, | |
| bias=biases[0], | |
| nonlinearity=nonlinearity, | |
| order=order[0:3], | |
| inplace_nonlinearity=first_inplace, | |
| **residual_params | |
| ) | |
| self.conv_block_0 = block( | |
| hidden_channels, hidden_channels, | |
| kernel_size=2 if self.border_free and first_stride < 1 else | |
| kernel_size, | |
| padding=padding, | |
| bias=biases[0], | |
| nonlinearity=nonlinearity, | |
| order=order[0:3], | |
| inplace_nonlinearity=inplace_nonlinearity, | |
| stride=first_stride, | |
| blur=first_blur, | |
| **residual_params | |
| ) | |
| self.conv_block_1 = block( | |
| hidden_channels, hidden_channels, | |
| kernel_size=kernel_size, | |
| padding=padding, | |
| bias=biases[1], | |
| nonlinearity=nonlinearity, | |
| order=order[3:], | |
| inplace_nonlinearity=inplace_nonlinearity, | |
| stride=second_stride, | |
| blur=second_blur, | |
| **residual_params | |
| ) | |
| self.conv_block_1x1_out = block( | |
| hidden_channels, out_channels, | |
| 1, 1, 0, | |
| bias=biases[1], | |
| nonlinearity=nonlinearity, | |
| order=order[0:3], | |
| inplace_nonlinearity=inplace_nonlinearity, | |
| **residual_params | |
| ) | |
| # Shortcut branch. | |
| if self.learn_shortcut: | |
| if skip_nonlinearity: | |
| skip_nonlinearity_type = nonlinearity | |
| else: | |
| skip_nonlinearity_type = '' | |
| self.conv_block_s = skip_block(in_channels, out_channels, | |
| bias=biases[2], | |
| nonlinearity=skip_nonlinearity_type, | |
| order=order[0:3], | |
| stride=shortcut_stride, | |
| blur=shortcut_blur, | |
| **shortcut_params) | |
| elif in_channels < out_channels: | |
| if skip_nonlinearity: | |
| skip_nonlinearity_type = nonlinearity | |
| else: | |
| skip_nonlinearity_type = '' | |
| self.conv_block_s = skip_block(in_channels, | |
| out_channels - in_channels, | |
| bias=biases[2], | |
| nonlinearity=skip_nonlinearity_type, | |
| order=order[0:3], | |
| stride=shortcut_stride, | |
| blur=shortcut_blur, | |
| **shortcut_params) | |
| # Whether this block expects conditional inputs. | |
| self.conditional = \ | |
| getattr(self.conv_block_0, 'conditional', False) or \ | |
| getattr(self.conv_block_1, 'conditional', False) or \ | |
| getattr(self.conv_block_1x1_in, 'conditional', False) or \ | |
| getattr(self.conv_block_1x1_out, 'conditional', False) | |
| def _get_stride_blur(self): | |
| if self.stride > 1: | |
| # Downsampling. | |
| first_stride, second_stride = 1, self.stride | |
| first_blur, second_blur = False, self.blur | |
| shortcut_blur = False | |
| shortcut_stride = 1 | |
| if self.blur: | |
| # The shortcut branch uses blur_downsample + stride-1 conv | |
| if self.border_free: | |
| self.resample = nn.AvgPool2d(2) | |
| else: | |
| self.resample = BlurDownsample() | |
| else: | |
| shortcut_stride = self.stride | |
| self.resample = nn.AvgPool2d(2) | |
| elif self.stride < 1: | |
| # Upsampling. | |
| first_stride, second_stride = self.stride, 1 | |
| first_blur, second_blur = self.blur, False | |
| shortcut_blur = False | |
| shortcut_stride = 1 | |
| if self.blur: | |
| # The shortcut branch uses blur_upsample + stride-1 conv | |
| if self.border_free: | |
| self.resample = nn.Upsample(scale_factor=2, | |
| mode='bilinear') | |
| else: | |
| self.resample = BlurUpsample() | |
| else: | |
| shortcut_stride = self.stride | |
| self.resample = nn.Upsample(scale_factor=2) | |
| else: | |
| first_stride = second_stride = 1 | |
| first_blur = second_blur = False | |
| shortcut_stride = 1 | |
| shortcut_blur = False | |
| self.resample = None | |
| return (first_stride, second_stride, shortcut_stride, | |
| first_blur, second_blur, shortcut_blur) | |
| def conv_blocks( | |
| self, x, *cond_inputs, separate_cond=False, **kw_cond_inputs | |
| ): | |
| if separate_cond: | |
| assert len(list(cond_inputs)) == 4 | |
| dx = self.conv_block_1x1_in(x, cond_inputs[0], | |
| **kw_cond_inputs.get('kwargs_0', {})) | |
| dx = self.conv_block_0(dx, cond_inputs[1], | |
| **kw_cond_inputs.get('kwargs_1', {})) | |
| dx = self.conv_block_1(dx, cond_inputs[2], | |
| **kw_cond_inputs.get('kwargs_2', {})) | |
| dx = self.conv_block_1x1_out(dx, cond_inputs[3], | |
| **kw_cond_inputs.get('kwargs_3', {})) | |
| else: | |
| dx = self.conv_block_1x1_in(x, *cond_inputs, **kw_cond_inputs) | |
| dx = self.conv_block_0(dx, *cond_inputs, **kw_cond_inputs) | |
| dx = self.conv_block_1(dx, *cond_inputs, **kw_cond_inputs) | |
| dx = self.conv_block_1x1_out(dx, *cond_inputs, **kw_cond_inputs) | |
| return dx | |
| def forward(self, x, *cond_inputs, do_checkpoint=False, **kw_cond_inputs): | |
| if do_checkpoint: | |
| dx = checkpoint(self.conv_blocks, x, *cond_inputs, **kw_cond_inputs) | |
| else: | |
| dx = self.conv_blocks(x, *cond_inputs, **kw_cond_inputs) | |
| if self.resample_first and self.resample is not None: | |
| x = self.resample(x) | |
| if self.learn_shortcut: | |
| x_shortcut = self.conv_block_s( | |
| x, *cond_inputs, **kw_cond_inputs | |
| ) | |
| elif self.in_channels < self.out_channels: | |
| x_shortcut_pad = self.conv_block_s( | |
| x, *cond_inputs, **kw_cond_inputs | |
| ) | |
| x_shortcut = torch.cat((x, x_shortcut_pad), dim=1) | |
| elif self.in_channels > self.out_channels: | |
| x_shortcut = x[:, :self.out_channels, :, :] | |
| else: | |
| x_shortcut = x | |
| if not self.resample_first and self.resample is not None: | |
| x_shortcut = self.resample(x_shortcut) | |
| output = x_shortcut + dx | |
| return self.output_scale * output | |
| def extra_repr(self): | |
| s = 'output_scale={output_scale}' | |
| return s.format(**self.__dict__) | |
| class DeepRes2dBlock(_BaseDeepResBlock): | |
| r"""Residual block for 2D input. | |
| Args: | |
| in_channels (int) : Number of channels in the input tensor. | |
| out_channels (int) : Number of channels in the output tensor. | |
| kernel_size (int, optional, default=3): Kernel size for the | |
| convolutional filters in the residual link. | |
| padding (int, optional, default=1): Padding size. | |
| dilation (int, optional, default=1): Dilation factor. | |
| groups (int, optional, default=1): Number of convolutional/linear | |
| groups. | |
| padding_mode (string, optional, default='zeros'): Type of padding: | |
| ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. | |
| weight_norm_type (str, optional, default='none'): | |
| Type of weight normalization. | |
| ``'none'``, ``'spectral'``, ``'weight'`` | |
| or ``'weight_demod'``. | |
| weight_norm_params (obj, optional, default=None): | |
| Parameters of weight normalization. | |
| If not ``None``, ``weight_norm_params.__dict__`` will be used as | |
| keyword arguments when initializing weight normalization. | |
| activation_norm_type (str, optional, default='none'): | |
| Type of activation normalization. | |
| ``'none'``, ``'instance'``, ``'batch'``, ``'sync_batch'``, | |
| ``'layer'``, ``'layer_2d'``, ``'group'``, ``'adaptive'``, | |
| ``'spatially_adaptive'`` or ``'hyper_spatially_adaptive'``. | |
| activation_norm_params (obj, optional, default=None): | |
| Parameters of activation normalization. | |
| If not ``None``, ``activation_norm_params.__dict__`` will be used as | |
| keyword arguments when initializing activation normalization. | |
| skip_activation_norm (bool, optional, default=True): If ``True`` and | |
| ``learn_shortcut`` is also ``True``, applies activation norm to the | |
| learned shortcut connection. | |
| skip_nonlinearity (bool, optional, default=True): If ``True`` and | |
| ``learn_shortcut`` is also ``True``, applies nonlinearity to the | |
| learned shortcut connection. | |
| nonlinearity (str, optional, default='none'): | |
| Type of nonlinear activation function in the residual link. | |
| ``'none'``, ``'relu'``, ``'leakyrelu'``, ``'prelu'``, | |
| ``'tanh'`` , ``'sigmoid'`` or ``'softmax'``. | |
| inplace_nonlinearity (bool, optional, default=False): If ``True``, | |
| set ``inplace=True`` when initializing the nonlinearity layers. | |
| apply_noise (bool, optional, default=False): If ``True``, adds | |
| Gaussian noise with learnable magnitude to the convolution output. | |
| hidden_channels_equal_out_channels (bool, optional, default=False): | |
| If ``True``, set the hidden channel number to be equal to the | |
| output channel number. If ``False``, the hidden channel number | |
| equals to the smaller of the input channel number and the | |
| output channel number. | |
| order (str, optional, default='CNACNA'): Order of operations | |
| in the residual link. | |
| ``'C'``: convolution, | |
| ``'N'``: normalization, | |
| ``'A'``: nonlinear activation. | |
| learn_shortcut (bool, optional, default=False): If ``True``, always use | |
| a convolutional shortcut instead of an identity one, otherwise only | |
| use a convolutional one if input and output have different number of | |
| channels. | |
| """ | |
| def __init__(self, in_channels, out_channels, kernel_size=3, | |
| stride=1, padding=1, dilation=1, groups=1, bias=True, | |
| padding_mode='zeros', | |
| weight_norm_type='none', weight_norm_params=None, | |
| activation_norm_type='none', activation_norm_params=None, | |
| skip_activation_norm=True, skip_nonlinearity=False, | |
| skip_weight_norm=True, | |
| nonlinearity='leakyrelu', inplace_nonlinearity=False, | |
| apply_noise=False, hidden_channels_equal_out_channels=False, | |
| order='CNACNA', learn_shortcut=False, output_scale=1, | |
| blur=True, resample_first=True, border_free=False): | |
| super().__init__(in_channels, out_channels, kernel_size, stride, | |
| padding, dilation, groups, bias, padding_mode, | |
| weight_norm_type, weight_norm_params, | |
| activation_norm_type, activation_norm_params, | |
| skip_activation_norm, skip_nonlinearity, nonlinearity, | |
| inplace_nonlinearity, apply_noise, | |
| hidden_channels_equal_out_channels, order, Conv2dBlock, | |
| learn_shortcut, output_scale, blur=blur, | |
| resample_first=resample_first, border_free=border_free, | |
| skip_weight_norm=skip_weight_norm) | |