Spaces:
Runtime error
Runtime error
Add examples and description (#2)
Browse files- Add examples and description (4ec7561ba4cb2c54cae93fd0e488e9968db8b902)
Co-authored-by: hysts <hysts@users.noreply.huggingface.co>
app.py
CHANGED
|
@@ -14,7 +14,16 @@ from lang_list import (
|
|
| 14 |
TEXT_SOURCE_LANGUAGE_NAMES,
|
| 15 |
)
|
| 16 |
|
| 17 |
-
DESCRIPTION = "# SeamlessM4T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
TASK_NAMES = [
|
| 20 |
"S2ST (Speech to Speech translation)",
|
|
@@ -23,10 +32,8 @@ TASK_NAMES = [
|
|
| 23 |
"T2TT (Text to Text translation)",
|
| 24 |
"ASR (Automatic Speech Recognition)",
|
| 25 |
]
|
| 26 |
-
|
| 27 |
AUDIO_SAMPLE_RATE = 16000.0
|
| 28 |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
| 29 |
-
|
| 30 |
DEFAULT_TARGET_LANGUAGE = "French"
|
| 31 |
|
| 32 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
@@ -41,14 +48,14 @@ translator = Translator(
|
|
| 41 |
def predict(
|
| 42 |
task_name: str,
|
| 43 |
audio_source: str,
|
| 44 |
-
input_audio_mic: str,
|
| 45 |
-
input_audio_file: str,
|
| 46 |
-
input_text: str,
|
| 47 |
-
source_language: str,
|
| 48 |
target_language: str,
|
| 49 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 50 |
task_name = task_name.split()[0]
|
| 51 |
-
source_language_code = LANGUAGE_NAME_TO_CODE
|
| 52 |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
| 53 |
|
| 54 |
if task_name in ["S2ST", "S2TT", "ASR"]:
|
|
@@ -78,6 +85,66 @@ def predict(
|
|
| 78 |
return None, text_out
|
| 79 |
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
| 82 |
mic = audio_source == "microphone"
|
| 83 |
return (
|
|
@@ -153,6 +220,17 @@ def update_output_ui(task_name: str) -> tuple[dict, dict]:
|
|
| 153 |
raise ValueError(f"Unknown task: {task_name}")
|
| 154 |
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
with gr.Blocks(css="style.css") as demo:
|
| 157 |
gr.Markdown(DESCRIPTION)
|
| 158 |
gr.DuplicateButton(
|
|
@@ -207,6 +285,61 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 207 |
)
|
| 208 |
output_text = gr.Textbox(label="Translated text")
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
audio_source.change(
|
| 211 |
fn=update_audio_ui,
|
| 212 |
inputs=audio_source,
|
|
@@ -234,6 +367,18 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 234 |
outputs=[output_audio, output_text],
|
| 235 |
queue=False,
|
| 236 |
api_name=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
)
|
| 238 |
|
| 239 |
btn.click(
|
|
|
|
| 14 |
TEXT_SOURCE_LANGUAGE_NAMES,
|
| 15 |
)
|
| 16 |
|
| 17 |
+
DESCRIPTION = """# SeamlessM4T
|
| 18 |
+
|
| 19 |
+
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
|
| 20 |
+
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
|
| 21 |
+
|
| 22 |
+
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
|
| 23 |
+
translation and more, without relying on multiple separate models.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"
|
| 27 |
|
| 28 |
TASK_NAMES = [
|
| 29 |
"S2ST (Speech to Speech translation)",
|
|
|
|
| 32 |
"T2TT (Text to Text translation)",
|
| 33 |
"ASR (Automatic Speech Recognition)",
|
| 34 |
]
|
|
|
|
| 35 |
AUDIO_SAMPLE_RATE = 16000.0
|
| 36 |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
|
|
|
| 37 |
DEFAULT_TARGET_LANGUAGE = "French"
|
| 38 |
|
| 39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 48 |
def predict(
|
| 49 |
task_name: str,
|
| 50 |
audio_source: str,
|
| 51 |
+
input_audio_mic: str | None,
|
| 52 |
+
input_audio_file: str | None,
|
| 53 |
+
input_text: str | None,
|
| 54 |
+
source_language: str | None,
|
| 55 |
target_language: str,
|
| 56 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
| 57 |
task_name = task_name.split()[0]
|
| 58 |
+
source_language_code = LANGUAGE_NAME_TO_CODE.get(source_language, None)
|
| 59 |
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
| 60 |
|
| 61 |
if task_name in ["S2ST", "S2TT", "ASR"]:
|
|
|
|
| 85 |
return None, text_out
|
| 86 |
|
| 87 |
|
| 88 |
+
def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[str, str]:
|
| 89 |
+
return predict(
|
| 90 |
+
task_name="S2ST",
|
| 91 |
+
audio_source="file",
|
| 92 |
+
input_audio_mic=None,
|
| 93 |
+
input_audio_file=input_audio_file,
|
| 94 |
+
input_text=None,
|
| 95 |
+
source_language=None,
|
| 96 |
+
target_language=target_language,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def process_s2tt_example(input_audio_file: str, target_language: str) -> tuple[str, str]:
|
| 101 |
+
return predict(
|
| 102 |
+
task_name="S2TT",
|
| 103 |
+
audio_source="file",
|
| 104 |
+
input_audio_mic=None,
|
| 105 |
+
input_audio_file=input_audio_file,
|
| 106 |
+
input_text=None,
|
| 107 |
+
source_language=None,
|
| 108 |
+
target_language=target_language,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def process_t2st_example(input_text: str, source_language: str, target_language: str) -> tuple[str, str]:
|
| 113 |
+
return predict(
|
| 114 |
+
task_name="T2ST",
|
| 115 |
+
audio_source="",
|
| 116 |
+
input_audio_mic=None,
|
| 117 |
+
input_audio_file=None,
|
| 118 |
+
input_text=input_text,
|
| 119 |
+
source_language=source_language,
|
| 120 |
+
target_language=target_language,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def process_t2tt_example(input_text: str, source_language: str, target_language: str) -> tuple[str, str]:
|
| 125 |
+
return predict(
|
| 126 |
+
task_name="T2TT",
|
| 127 |
+
audio_source="",
|
| 128 |
+
input_audio_mic=None,
|
| 129 |
+
input_audio_file=None,
|
| 130 |
+
input_text=input_text,
|
| 131 |
+
source_language=source_language,
|
| 132 |
+
target_language=target_language,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def process_asr_example(input_audio_file: str, target_language: str) -> tuple[str, str]:
|
| 137 |
+
return predict(
|
| 138 |
+
task_name="ASR",
|
| 139 |
+
audio_source="file",
|
| 140 |
+
input_audio_mic=None,
|
| 141 |
+
input_audio_file=input_audio_file,
|
| 142 |
+
input_text=None,
|
| 143 |
+
source_language=None,
|
| 144 |
+
target_language=target_language,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
| 149 |
mic = audio_source == "microphone"
|
| 150 |
return (
|
|
|
|
| 220 |
raise ValueError(f"Unknown task: {task_name}")
|
| 221 |
|
| 222 |
|
| 223 |
+
def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]:
|
| 224 |
+
task_name = task_name.split()[0]
|
| 225 |
+
return (
|
| 226 |
+
gr.update(visible=task_name == "S2ST"), # s2st_example_row
|
| 227 |
+
gr.update(visible=task_name == "S2TT"), # s2tt_example_row
|
| 228 |
+
gr.update(visible=task_name == "T2ST"), # t2st_example_row
|
| 229 |
+
gr.update(visible=task_name == "T2TT"), # t2tt_example_row
|
| 230 |
+
gr.update(visible=task_name == "ASR"), # asr_example_row
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
with gr.Blocks(css="style.css") as demo:
|
| 235 |
gr.Markdown(DESCRIPTION)
|
| 236 |
gr.DuplicateButton(
|
|
|
|
| 285 |
)
|
| 286 |
output_text = gr.Textbox(label="Translated text")
|
| 287 |
|
| 288 |
+
with gr.Row(visible=True) as s2st_example_row:
|
| 289 |
+
s2st_examples = gr.Examples(
|
| 290 |
+
examples=[
|
| 291 |
+
["assets/sample_input.mp3", "French"],
|
| 292 |
+
["assets/sample_input.mp3", "Mandarin Chinese"],
|
| 293 |
+
],
|
| 294 |
+
inputs=[input_audio_file, target_language],
|
| 295 |
+
outputs=[output_audio, output_text],
|
| 296 |
+
fn=process_s2st_example,
|
| 297 |
+
cache_examples=CACHE_EXAMPLES,
|
| 298 |
+
)
|
| 299 |
+
with gr.Row(visible=False) as s2tt_example_row:
|
| 300 |
+
s2tt_examples = gr.Examples(
|
| 301 |
+
examples=[
|
| 302 |
+
["assets/sample_input.mp3", "French"],
|
| 303 |
+
["assets/sample_input.mp3", "Mandarin Chinese"],
|
| 304 |
+
],
|
| 305 |
+
inputs=[input_audio_file, target_language],
|
| 306 |
+
outputs=[output_audio, output_text],
|
| 307 |
+
fn=process_s2tt_example,
|
| 308 |
+
cache_examples=CACHE_EXAMPLES,
|
| 309 |
+
)
|
| 310 |
+
with gr.Row(visible=False) as t2st_example_row:
|
| 311 |
+
t2st_examples = gr.Examples(
|
| 312 |
+
examples=[
|
| 313 |
+
["My favorite animal is the elephant.", "English", "French"],
|
| 314 |
+
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
| 315 |
+
],
|
| 316 |
+
inputs=[input_text, source_language, target_language],
|
| 317 |
+
outputs=[output_audio, output_text],
|
| 318 |
+
fn=process_t2st_example,
|
| 319 |
+
cache_examples=CACHE_EXAMPLES,
|
| 320 |
+
)
|
| 321 |
+
with gr.Row(visible=False) as t2tt_example_row:
|
| 322 |
+
t2tt_examples = gr.Examples(
|
| 323 |
+
examples=[
|
| 324 |
+
["My favorite animal is the elephant.", "English", "French"],
|
| 325 |
+
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
| 326 |
+
],
|
| 327 |
+
inputs=[input_text, source_language, target_language],
|
| 328 |
+
outputs=[output_audio, output_text],
|
| 329 |
+
fn=process_t2tt_example,
|
| 330 |
+
cache_examples=CACHE_EXAMPLES,
|
| 331 |
+
)
|
| 332 |
+
with gr.Row(visible=False) as asr_example_row:
|
| 333 |
+
asr_examples = gr.Examples(
|
| 334 |
+
examples=[
|
| 335 |
+
["assets/sample_input.mp3", "English"],
|
| 336 |
+
],
|
| 337 |
+
inputs=[input_audio_file, target_language],
|
| 338 |
+
outputs=[output_audio, output_text],
|
| 339 |
+
fn=process_asr_example,
|
| 340 |
+
cache_examples=CACHE_EXAMPLES,
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
audio_source.change(
|
| 344 |
fn=update_audio_ui,
|
| 345 |
inputs=audio_source,
|
|
|
|
| 367 |
outputs=[output_audio, output_text],
|
| 368 |
queue=False,
|
| 369 |
api_name=False,
|
| 370 |
+
).then(
|
| 371 |
+
fn=update_example_ui,
|
| 372 |
+
inputs=task_name,
|
| 373 |
+
outputs=[
|
| 374 |
+
s2st_example_row,
|
| 375 |
+
s2tt_example_row,
|
| 376 |
+
t2st_example_row,
|
| 377 |
+
t2tt_example_row,
|
| 378 |
+
asr_example_row,
|
| 379 |
+
],
|
| 380 |
+
queue=False,
|
| 381 |
+
api_name=False,
|
| 382 |
)
|
| 383 |
|
| 384 |
btn.click(
|