Spaces:
Running
Running
init commit
Browse files- Dockerfile +60 -0
- app.py +104 -0
- requirements.txt +13 -0
- tool.py +344 -0
Dockerfile
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu22.04
|
| 2 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
| 3 |
+
RUN apt-get update && \
|
| 4 |
+
apt-get upgrade -y && \
|
| 5 |
+
apt-get install -y --no-install-recommends \
|
| 6 |
+
git \
|
| 7 |
+
git-lfs \
|
| 8 |
+
wget \
|
| 9 |
+
curl \
|
| 10 |
+
# python build dependencies \
|
| 11 |
+
build-essential \
|
| 12 |
+
libssl-dev \
|
| 13 |
+
zlib1g-dev \
|
| 14 |
+
libbz2-dev \
|
| 15 |
+
libreadline-dev \
|
| 16 |
+
libsqlite3-dev \
|
| 17 |
+
libncursesw5-dev \
|
| 18 |
+
xz-utils \
|
| 19 |
+
tk-dev \
|
| 20 |
+
libxml2-dev \
|
| 21 |
+
libxmlsec1-dev \
|
| 22 |
+
libffi-dev \
|
| 23 |
+
liblzma-dev \
|
| 24 |
+
# gradio dependencies \
|
| 25 |
+
ffmpeg \
|
| 26 |
+
poppler-utils \
|
| 27 |
+
&& apt-get clean \
|
| 28 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
RUN useradd -m -u 1000 user
|
| 32 |
+
USER user
|
| 33 |
+
ENV HOME=/home/user \
|
| 34 |
+
PATH=/home/user/.local/bin:${PATH}
|
| 35 |
+
WORKDIR ${HOME}/app
|
| 36 |
+
|
| 37 |
+
RUN curl https://pyenv.run | bash
|
| 38 |
+
ENV PATH=${HOME}/.pyenv/shims:${HOME}/.pyenv/bin:${PATH}
|
| 39 |
+
ARG PYTHON_VERSION=3.10.12
|
| 40 |
+
RUN pyenv install ${PYTHON_VERSION} && \
|
| 41 |
+
pyenv global ${PYTHON_VERSION} && \
|
| 42 |
+
pyenv rehash && \
|
| 43 |
+
pip install --no-cache-dir -U pip setuptools wheel && \
|
| 44 |
+
pip install packaging ninja
|
| 45 |
+
|
| 46 |
+
COPY --chown=1000 ./requirements.txt /tmp/requirements.txt
|
| 47 |
+
RUN pip install --no-cache-dir --upgrade -r /tmp/requirements.txt && \
|
| 48 |
+
pip install flash-attn --no-build-isolation
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
COPY --chown=1000 . ${HOME}/app
|
| 53 |
+
ENV PYTHONPATH=${HOME}/app \
|
| 54 |
+
PYTHONUNBUFFERED=1 \
|
| 55 |
+
GRADIO_ALLOW_FLAGGING=never \
|
| 56 |
+
GRADIO_NUM_PORTS=1 \
|
| 57 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
| 58 |
+
GRADIO_THEME=huggingface \
|
| 59 |
+
SYSTEM=spaces
|
| 60 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from tool import VisualRAGTool
|
| 4 |
+
|
| 5 |
+
tool = VisualRAGTool()
|
| 6 |
+
|
| 7 |
+
def search(query, k, api_key):
|
| 8 |
+
"""Searches for the most relevant pages based on the query."""
|
| 9 |
+
print("=============== SEARCHING ===============")
|
| 10 |
+
|
| 11 |
+
context, answer = tool.search(query, k, api_key)
|
| 12 |
+
|
| 13 |
+
context_gallery = [(page.image, page.caption) for page in context]
|
| 14 |
+
|
| 15 |
+
print("========================================")
|
| 16 |
+
|
| 17 |
+
return gr.Gallery(value=context_gallery, label="Retrieved Documents", height=400, show_label=True, visible=True), answer
|
| 18 |
+
|
| 19 |
+
def index(files, contextualize_embeds, api_key):
|
| 20 |
+
"""Indexes the uploaded files."""
|
| 21 |
+
print("=============== INDEXING ===============")
|
| 22 |
+
|
| 23 |
+
indexed_files_num = tool.index(
|
| 24 |
+
files=files,
|
| 25 |
+
contextualize=contextualize_embeds,
|
| 26 |
+
api_key=api_key,
|
| 27 |
+
overwrite_db=True
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
print("========================================")
|
| 31 |
+
return gr.Textbox(f"Uploaded and processed {indexed_files_num} pages!"),\
|
| 32 |
+
gr.Textbox(
|
| 33 |
+
lines=2,
|
| 34 |
+
label="Query",
|
| 35 |
+
show_label=False,
|
| 36 |
+
placeholder="Enter your prompt here and press Shift+Enter or press the button",
|
| 37 |
+
interactive=True,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
def show_processing_status():
|
| 41 |
+
"""Updates the upload status."""
|
| 42 |
+
return gr.Textbox(label="Processing Status", interactive=False, visible=True),\
|
| 43 |
+
gr.Checkbox(label="Contextualize Embeddings", visible=False),\
|
| 44 |
+
gr.Textbox(
|
| 45 |
+
lines=2,
|
| 46 |
+
label="Query",
|
| 47 |
+
show_label=False,
|
| 48 |
+
placeholder="Enter your prompt here and press Shift+Enter or press the button",
|
| 49 |
+
interactive=False,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
with gr.Blocks(
|
| 53 |
+
theme=gr.themes.Ocean(),
|
| 54 |
+
title="ColPali Tool Demo",
|
| 55 |
+
) as demo:
|
| 56 |
+
gr.Markdown("""\
|
| 57 |
+
# ColPali: Efficient Document Retrieval with Vision Language Models (ColQwen2) 📚
|
| 58 |
+
Demo to test the ColPali RAG Tool powered by ColQwen2 (ColPali) on PDF documents.
|
| 59 |
+
ColPali is implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449).
|
| 60 |
+
|
| 61 |
+
This tool allows you to upload PDF files and search for the most relevant pages based on your query.
|
| 62 |
+
Refresh the page if you change documents!
|
| 63 |
+
|
| 64 |
+
⚠️ This demo uses a model trained exclusively on A4 PDFs in portrait mode, containing english text. Performance is expected to drop for other page formats and languages.
|
| 65 |
+
Other models will be released with better robustness towards different languages and document formats!
|
| 66 |
+
""")
|
| 67 |
+
|
| 68 |
+
api_key = gr.Textbox(placeholder="Enter your OpenAI KEY here (optional)", label="API key")
|
| 69 |
+
|
| 70 |
+
stored_messages = gr.State(value=[])
|
| 71 |
+
|
| 72 |
+
gr.Markdown("## 1️⃣ Upload PDFs")
|
| 73 |
+
gr.Markdown("Upload PDF files to index and search.")
|
| 74 |
+
with gr.Group():
|
| 75 |
+
contextualize_embeds = gr.Checkbox(label="Contextualize Embeddings", info="Add images surrouding context as metadata. Generated using gpt-4o-mini. ⚠️ Indexing will be longer!", value=True)
|
| 76 |
+
upload_files = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload files")
|
| 77 |
+
processing_status = gr.Textbox(label="Processing Status", interactive=False, visible=False)
|
| 78 |
+
|
| 79 |
+
gr.Markdown("## 2️⃣ Search")
|
| 80 |
+
gr.Markdown("Ask a question relevant to the documents you uploaded.")
|
| 81 |
+
with gr.Group():
|
| 82 |
+
chatbot = gr.Textbox(label="AI Assistant", placeholder="Generated response based on retrieved documents.", lines=6)
|
| 83 |
+
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True, visible=False)
|
| 84 |
+
with gr.Row(equal_height=True):
|
| 85 |
+
with gr.Column(scale=4):
|
| 86 |
+
text_input = gr.Textbox(
|
| 87 |
+
lines=2,
|
| 88 |
+
label="Query",
|
| 89 |
+
show_label=False,
|
| 90 |
+
placeholder="Enter your prompt here and press Shift+Enter or press the button",
|
| 91 |
+
)
|
| 92 |
+
with gr.Column(scale=1):
|
| 93 |
+
k = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="Pages to retrieve")
|
| 94 |
+
search_button = gr.Button("🔍 Search", variant="primary")
|
| 95 |
+
|
| 96 |
+
# Define the flow of the demo
|
| 97 |
+
# upload_files.change(index, inputs=[upload_files, api_key], outputs=[upload_status])
|
| 98 |
+
upload_files.change(show_processing_status, inputs=[], outputs=[processing_status, contextualize_embeds, text_input])\
|
| 99 |
+
.then(index, inputs=[upload_files, contextualize_embeds, api_key], outputs=[processing_status, text_input])
|
| 100 |
+
text_input.submit(search, inputs=[text_input, k, api_key], outputs=[output_gallery, chatbot])
|
| 101 |
+
search_button.click(search, inputs=[text_input, k, api_key], outputs=[output_gallery, chatbot])
|
| 102 |
+
|
| 103 |
+
if __name__ == "__main__":
|
| 104 |
+
demo.queue(max_size=5).launch(debug=True, server_name="0.0.0.0")
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
colpali-engine==0.3.8
|
| 2 |
+
pdf2image
|
| 3 |
+
GPUtil
|
| 4 |
+
accelerate==0.30.1
|
| 5 |
+
openai
|
| 6 |
+
gradio
|
| 7 |
+
gradio_client
|
| 8 |
+
tqdm
|
| 9 |
+
Pillow
|
| 10 |
+
pqdm
|
| 11 |
+
smolagents
|
| 12 |
+
pyyaml
|
| 13 |
+
python-dotenv
|
tool.py
ADDED
|
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import List, Optional, Tuple
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch.utils.data import DataLoader, Dataset
|
| 6 |
+
|
| 7 |
+
import base64
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from pdf2image import convert_from_path
|
| 11 |
+
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
from pqdm.processes import pqdm
|
| 14 |
+
|
| 15 |
+
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
| 16 |
+
|
| 17 |
+
from smolagents import Tool, ChatMessage
|
| 18 |
+
|
| 19 |
+
from utils import query_openai
|
| 20 |
+
|
| 21 |
+
from dotenv import load_dotenv
|
| 22 |
+
load_dotenv()
|
| 23 |
+
|
| 24 |
+
def encode_image_to_base64(image):
|
| 25 |
+
"""Encodes a PIL image to a base64 string."""
|
| 26 |
+
buffered = BytesIO()
|
| 27 |
+
image.save(buffered, format="JPEG")
|
| 28 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 29 |
+
|
| 30 |
+
DEFAULT_SYSTEM_PROMPT = \
|
| 31 |
+
"""You are a smart assistant designed to answer questions about a PDF document.
|
| 32 |
+
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
| 33 |
+
Use them to construct a short response to the question, and cite your sources in the following format: (document, page number).
|
| 34 |
+
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
| 35 |
+
Give detailed and extensive answers, only containing info in the pages you are given.
|
| 36 |
+
You can answer using information contained in plots and figures if necessary.
|
| 37 |
+
Answer in the same language as the query."""
|
| 38 |
+
|
| 39 |
+
def _build_query(query, pages):
|
| 40 |
+
messages = []
|
| 41 |
+
messages.append({"type": "text", "text": "PDF pages:\n"})
|
| 42 |
+
for page in pages:
|
| 43 |
+
capt = page.caption
|
| 44 |
+
if capt is not None:
|
| 45 |
+
messages.append({
|
| 46 |
+
"type": "text",
|
| 47 |
+
"text": capt
|
| 48 |
+
})
|
| 49 |
+
messages.append({
|
| 50 |
+
"type": "image_url",
|
| 51 |
+
"image_url": {
|
| 52 |
+
"url": f"data:image/jpeg;base64,{encode_image_to_base64(page.image)}"
|
| 53 |
+
},
|
| 54 |
+
})
|
| 55 |
+
messages.append({"type": "text", "text": f"Query:\n{query}"})
|
| 56 |
+
|
| 57 |
+
return messages
|
| 58 |
+
|
| 59 |
+
def query_openai(query, pages, api_key=None, system_prompt=DEFAULT_SYSTEM_PROMPT, model="gpt-4o-mini") -> ChatMessage:
|
| 60 |
+
"""Calls OpenAI's GPT-4o-mini with the query and image data."""
|
| 61 |
+
if api_key and api_key.startswith("sk"):
|
| 62 |
+
try:
|
| 63 |
+
from openai import OpenAI
|
| 64 |
+
|
| 65 |
+
client = OpenAI(api_key=api_key.strip())
|
| 66 |
+
|
| 67 |
+
response = client.chat.completions.create(
|
| 68 |
+
model=model,
|
| 69 |
+
messages=[
|
| 70 |
+
{
|
| 71 |
+
"role": "system",
|
| 72 |
+
"content": system_prompt
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"role": "user",
|
| 76 |
+
"content": _build_query(query, pages)
|
| 77 |
+
}
|
| 78 |
+
],
|
| 79 |
+
max_tokens=500,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
message = ChatMessage.from_dict(
|
| 83 |
+
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
|
| 84 |
+
)
|
| 85 |
+
message.raw = response
|
| 86 |
+
|
| 87 |
+
return message
|
| 88 |
+
|
| 89 |
+
except Exception as e:
|
| 90 |
+
return "OpenAI API connection failure. Verify the provided key is correct (sk-***)."
|
| 91 |
+
|
| 92 |
+
return "Enter your OpenAI API key to get a custom response"
|
| 93 |
+
|
| 94 |
+
DEFAULT_CONTEXT_PROMPT = \
|
| 95 |
+
"""You are a smart assistant designed to extract context of PDF pages.
|
| 96 |
+
Give concise answers, only containing info in the pages you are given.
|
| 97 |
+
You can answer using information contained in plots and figures if necessary."""
|
| 98 |
+
|
| 99 |
+
RAG_SYSTEM_PROMPT = \
|
| 100 |
+
""" You are a smart assistant designed to answer questions about a PDF document.
|
| 101 |
+
|
| 102 |
+
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
| 103 |
+
Use them to construct a response to the question, and cite your sources.
|
| 104 |
+
Use the following citation format:
|
| 105 |
+
"Some information from a first document [1, p.Page Number]. Some information from the same first document but at a different page [1, p.Page Number]. Some more information from another document [2, p.Page Number].
|
| 106 |
+
...
|
| 107 |
+
Sources:
|
| 108 |
+
[1] Document Title
|
| 109 |
+
[2] Another Document Title"
|
| 110 |
+
|
| 111 |
+
You can answer using information contained in plots and figures if necessary.
|
| 112 |
+
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
| 113 |
+
Give detailed answers, only containing info in the pages you are given.
|
| 114 |
+
Answer in the same language as the query."""
|
| 115 |
+
|
| 116 |
+
@dataclass
|
| 117 |
+
class Metadata:
|
| 118 |
+
doc_title: str
|
| 119 |
+
page_id: int
|
| 120 |
+
context: Optional[str] = None
|
| 121 |
+
|
| 122 |
+
def __str__(self):
|
| 123 |
+
return f"Document: {self.doc_title}, Page ID: {self.page_id}, Context: {self.context}"
|
| 124 |
+
|
| 125 |
+
@dataclass
|
| 126 |
+
class Page:
|
| 127 |
+
image: Image.Image
|
| 128 |
+
metadata: Optional[Metadata] = None
|
| 129 |
+
|
| 130 |
+
@property
|
| 131 |
+
def caption(self):
|
| 132 |
+
if self.metadata is None:
|
| 133 |
+
return None
|
| 134 |
+
return f"Document: {self.metadata.doc_title}, Context: {self.metadata.context}"
|
| 135 |
+
|
| 136 |
+
class VisualRAGTool(Tool):
|
| 137 |
+
name = "visual_rag"
|
| 138 |
+
description = """Performs a RAG query on your internal PDF documents and returns the generated text response."""
|
| 139 |
+
inputs = {
|
| 140 |
+
"query": {
|
| 141 |
+
"type": "string",
|
| 142 |
+
"description": "The query to perform. This should be semantically close to your target documents.",
|
| 143 |
+
},
|
| 144 |
+
"k": {
|
| 145 |
+
"type": "number",
|
| 146 |
+
"description": "The number of documents to retrieve.",
|
| 147 |
+
"default": 1,
|
| 148 |
+
"nullable": True,
|
| 149 |
+
},
|
| 150 |
+
"api_key": {
|
| 151 |
+
"type": "string",
|
| 152 |
+
"description": "The OpenAI API key to use for the query. If not provided, the key will be taken from the OPENAI_KEY environment variable.",
|
| 153 |
+
"nullable": True,
|
| 154 |
+
}
|
| 155 |
+
}
|
| 156 |
+
output_type = "string"
|
| 157 |
+
|
| 158 |
+
def _init_models(self, model_name: str) -> None:
|
| 159 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 160 |
+
self.model = ColQwen2.from_pretrained(
|
| 161 |
+
model_name,
|
| 162 |
+
torch_dtype=torch.bfloat16,
|
| 163 |
+
device_map="auto",
|
| 164 |
+
attn_implementation="flash_attention_2"
|
| 165 |
+
).eval()
|
| 166 |
+
self.processor = ColQwen2Processor.from_pretrained(model_name)
|
| 167 |
+
|
| 168 |
+
def __init__(self, model_name: str = "vidore/colqwen2-v1.0", api_key: str = None, files: List[str] = None, **kwargs):
|
| 169 |
+
super().__init__(**kwargs)
|
| 170 |
+
self.model_name = model_name
|
| 171 |
+
self.api_key = api_key
|
| 172 |
+
|
| 173 |
+
self.embds = []
|
| 174 |
+
self.pages = []
|
| 175 |
+
|
| 176 |
+
self.files = files
|
| 177 |
+
|
| 178 |
+
self._init_models(self.model_name)
|
| 179 |
+
|
| 180 |
+
self.is_initialized = False
|
| 181 |
+
|
| 182 |
+
def setup(self):
|
| 183 |
+
"""
|
| 184 |
+
Overwrite this method here for any operation that is expensive and needs to be executed before you start using
|
| 185 |
+
your tool. Such as loading a big model.
|
| 186 |
+
"""
|
| 187 |
+
if self.files:
|
| 188 |
+
_ = self.index(self.files, self.api_key)
|
| 189 |
+
|
| 190 |
+
self.is_initialized = True
|
| 191 |
+
|
| 192 |
+
def _extract_contexts(self, images, api_key, window=10) -> List[str]:
|
| 193 |
+
"""Extracts context from images."""
|
| 194 |
+
try:
|
| 195 |
+
args = [
|
| 196 |
+
{
|
| 197 |
+
'query': "Give the general context about these pages. Give the context in the same language as the documents.",
|
| 198 |
+
'pages': [Page(image=im) for im in images[max(i-window+1, 0):i+1]],
|
| 199 |
+
'api_key': api_key,
|
| 200 |
+
'system_prompt': DEFAULT_CONTEXT_PROMPT
|
| 201 |
+
} for i in range(0, len(images), window)
|
| 202 |
+
]
|
| 203 |
+
window_contexts = pqdm(args, query_openai, n_jobs=8, argument_type='kwargs')
|
| 204 |
+
|
| 205 |
+
# code sequentially ftm with tqdm
|
| 206 |
+
# query = "Give the general context about these pages. Give the context in the same language as the documents."
|
| 207 |
+
# window_contexts = [query_openai(query, [Page(image=im) for im in images[max(i-window+1, 0):i+1]], api_key, DEFAULT_CONTEXT_PROMPT)\
|
| 208 |
+
# for i in tqdm(range(0, len(images), window))]
|
| 209 |
+
|
| 210 |
+
contexts = []
|
| 211 |
+
for i in range(len(images)):
|
| 212 |
+
context = window_contexts[i//window].content
|
| 213 |
+
contexts.append(context)
|
| 214 |
+
|
| 215 |
+
except Exception as e:
|
| 216 |
+
print(f"Error extracting contexts: {e}")
|
| 217 |
+
contexts = [None for _ in range(len(images))]
|
| 218 |
+
|
| 219 |
+
# Ensure that the number of contexts is equal to the number of images
|
| 220 |
+
assert len(contexts) == len(images)
|
| 221 |
+
|
| 222 |
+
return contexts
|
| 223 |
+
|
| 224 |
+
def _process_file(self, file: str, contextualize: bool = True, api_key: str = None, window: int = 10) -> List[Page]:
|
| 225 |
+
"""Converts a file to images and extracts metadata."""
|
| 226 |
+
title = file.split("/")[-1]
|
| 227 |
+
images = convert_from_path(file, thread_count=4)
|
| 228 |
+
if contextualize and api_key:
|
| 229 |
+
contexts = self._extract_contexts(images, api_key, window=window)
|
| 230 |
+
else:
|
| 231 |
+
contexts = [None for _ in range(len(images))]
|
| 232 |
+
metadatas = [Metadata(doc_title=title, page_id=i, context=contexts[i]) for i in range(len(images))]
|
| 233 |
+
|
| 234 |
+
return [Page(image=img, metadata=metadata) for img, metadata in zip(images, metadatas)]
|
| 235 |
+
|
| 236 |
+
def preprocess(self, files: List[str], contextualize: bool = True, api_key: str = None, window: int = 10) -> List[Page]:
|
| 237 |
+
"""Preprocesses the files and extracts metadata."""
|
| 238 |
+
pages = [page for file in files for page in self._process_file(file, contextualize=contextualize, api_key=api_key, window=window)]
|
| 239 |
+
|
| 240 |
+
print(f"Example metadata:\n{pages[0].metadata.context}")
|
| 241 |
+
|
| 242 |
+
return pages
|
| 243 |
+
|
| 244 |
+
def _embed_images(self, pages: List[Page]) -> List[torch.Tensor]:
|
| 245 |
+
"""Embeds the images using the model."""
|
| 246 |
+
"""Example script to run inference with ColPali (ColQwen2)"""
|
| 247 |
+
# run inference - docs
|
| 248 |
+
dataloader = DataLoader(
|
| 249 |
+
pages,
|
| 250 |
+
batch_size=4,
|
| 251 |
+
shuffle=False,
|
| 252 |
+
collate_fn=lambda x: self.processor.process_images([p.image for p in x]).to(self.device),
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
embds = []
|
| 256 |
+
|
| 257 |
+
for batch_doc in tqdm(dataloader):
|
| 258 |
+
with torch.no_grad():
|
| 259 |
+
batch_doc = {k: v.to(self.device) for k, v in batch_doc.items()}
|
| 260 |
+
embeddings_doc = self.model(**batch_doc)
|
| 261 |
+
embds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
| 262 |
+
|
| 263 |
+
return embds
|
| 264 |
+
|
| 265 |
+
def index(self, files: List[str], contextualize: bool = True, api_key: str = None, overwrite_db: bool = False) -> int:
|
| 266 |
+
print("Converting files...")
|
| 267 |
+
# Convert files to images and extract metadata
|
| 268 |
+
pgs = self.preprocess(files, contextualize=contextualize, api_key=api_key or self.api_key)
|
| 269 |
+
|
| 270 |
+
# Embed the images
|
| 271 |
+
embds = self._embed_images(pgs)
|
| 272 |
+
|
| 273 |
+
# Overwrite the database if necessary
|
| 274 |
+
if overwrite_db:
|
| 275 |
+
self.pages = []
|
| 276 |
+
self.embds = []
|
| 277 |
+
|
| 278 |
+
# Extend the pages
|
| 279 |
+
self.pages.extend(pgs)
|
| 280 |
+
|
| 281 |
+
# Extend the datasets
|
| 282 |
+
self.embds.extend(embds)
|
| 283 |
+
|
| 284 |
+
print(f"Extracted and indexed {len(pgs)} images from {len(files)} files.")
|
| 285 |
+
|
| 286 |
+
return len(embds)
|
| 287 |
+
|
| 288 |
+
def retrieve(self, query: str, k: int) -> List[Page]:
|
| 289 |
+
"""Retrieve the top k documents based on the query."""
|
| 290 |
+
k = min(k, len(self.embds))
|
| 291 |
+
|
| 292 |
+
qs = []
|
| 293 |
+
with torch.no_grad():
|
| 294 |
+
batch_query = self.processor.process_queries([query]).to(self.model.device)
|
| 295 |
+
embeddings_query = self.model(**batch_query)
|
| 296 |
+
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
| 297 |
+
|
| 298 |
+
# Run scoring
|
| 299 |
+
scores = self.processor.score(qs, self.embds, device=self.device)[0]
|
| 300 |
+
top_k_idx = scores.topk(k).indices.tolist()
|
| 301 |
+
|
| 302 |
+
print("Top Scores:")
|
| 303 |
+
[print(f'Page {self.pages[idx].metadata.page_id}: {scores[idx]}') for idx in top_k_idx]
|
| 304 |
+
|
| 305 |
+
# Get the top k results
|
| 306 |
+
results = [self.pages[idx] for idx in top_k_idx]
|
| 307 |
+
|
| 308 |
+
return results
|
| 309 |
+
|
| 310 |
+
def generate_answer(self, query: str, docs: List[Page], api_key: str = None) -> ChatMessage:
|
| 311 |
+
result = query_openai(query, docs, api_key or self.api_key, system_prompt=RAG_SYSTEM_PROMPT)
|
| 312 |
+
return result
|
| 313 |
+
|
| 314 |
+
def search(self, query: str, k: int = 1, api_key: str = None) -> Tuple[list, str]:
|
| 315 |
+
print(f"Searching for query: {query}")
|
| 316 |
+
|
| 317 |
+
# Retrieve the top k documents
|
| 318 |
+
context = self.retrieve(query, k)
|
| 319 |
+
|
| 320 |
+
# Generate response from GPT-4o-mini
|
| 321 |
+
rag_answer = self.generate_answer(
|
| 322 |
+
query=query,
|
| 323 |
+
docs=context,
|
| 324 |
+
api_key=api_key
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
return context, rag_answer.content
|
| 328 |
+
|
| 329 |
+
def forward(self, query: str, k: int = 1, api_key: str = None) -> str:
|
| 330 |
+
assert isinstance(query, str), "Your search query must be a string"
|
| 331 |
+
|
| 332 |
+
# Online indexing
|
| 333 |
+
# if files:
|
| 334 |
+
# _ = self.index(files, api_key)
|
| 335 |
+
|
| 336 |
+
# Retrieve the top k documents and generate response
|
| 337 |
+
_, rag_answer = self.search(
|
| 338 |
+
query=query,
|
| 339 |
+
files=None,
|
| 340 |
+
k=k,
|
| 341 |
+
api_key=api_key
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
return rag_answer
|