Spaces:
Running
Running
vijul.shah
commited on
Commit
·
f0adec0
1
Parent(s):
0f2d9f6
Added video upload support. Need to optimize and add new features
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ import matplotlib.pyplot as plt
|
|
| 9 |
import numpy as np
|
| 10 |
import streamlit as st
|
| 11 |
import torch
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
from torchvision import models
|
| 14 |
from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor
|
|
@@ -62,6 +63,53 @@ def _load_model(model_configs, device="cpu"):
|
|
| 62 |
return model
|
| 63 |
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
def main():
|
| 66 |
# Wide mode
|
| 67 |
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
|
@@ -84,37 +132,69 @@ def main():
|
|
| 84 |
st.set_option("deprecation.showfileUploaderEncoding", False)
|
| 85 |
# Choose your own image
|
| 86 |
uploaded_file = st.sidebar.file_uploader(
|
| 87 |
-
"Upload Image", type=["png", "jpeg", "jpg"]
|
| 88 |
)
|
| 89 |
if uploaded_file is not None:
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
if
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
max_size[
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
st.sidebar.title("Setup")
|
| 120 |
|
|
@@ -170,196 +250,182 @@ def main():
|
|
| 170 |
|
| 171 |
else:
|
| 172 |
with st.spinner("Analyzing..."):
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
"method": upscale_method_or_model,
|
| 178 |
-
"params": {"upscale": upscale},
|
| 179 |
-
}
|
| 180 |
-
config_file = {
|
| 181 |
-
"sr_configs": sr_configs,
|
| 182 |
-
"feature_extraction_configs": {
|
| 183 |
-
"blink_detection": False,
|
| 184 |
-
"upscale": upscale,
|
| 185 |
-
"extraction_library": "mediapipe",
|
| 186 |
-
},
|
| 187 |
-
}
|
| 188 |
-
|
| 189 |
-
img = np.array(input_img)
|
| 190 |
-
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 191 |
-
# if img.shape[0] > max_size or img.shape[1] > max_size:
|
| 192 |
-
# img = cv2.resize(img, (max_size, max_size))
|
| 193 |
-
|
| 194 |
-
ds_results = EyeDentityDatasetCreation(
|
| 195 |
-
feature_extraction_configs=config_file[
|
| 196 |
-
"feature_extraction_configs"
|
| 197 |
-
],
|
| 198 |
-
sr_configs=config_file["sr_configs"],
|
| 199 |
-
)(img)
|
| 200 |
-
# if ds_results is not None:
|
| 201 |
-
# print("ds_results = ", ds_results.keys())
|
| 202 |
-
|
| 203 |
-
preprocess_steps = [
|
| 204 |
-
transforms.ToTensor(),
|
| 205 |
-
transforms.Resize(
|
| 206 |
-
[32, 64],
|
| 207 |
-
# interpolation=transforms.InterpolationMode.BILINEAR,
|
| 208 |
-
interpolation=transforms.InterpolationMode.BICUBIC,
|
| 209 |
-
antialias=True,
|
| 210 |
-
),
|
| 211 |
-
]
|
| 212 |
-
preprocess_function = transforms.Compose(preprocess_steps)
|
| 213 |
-
|
| 214 |
-
left_eye = None
|
| 215 |
-
right_eye = None
|
| 216 |
-
|
| 217 |
-
if ds_results is None:
|
| 218 |
-
# print("type of input_img = ", type(input_img))
|
| 219 |
-
input_img = preprocess_function(input_img)
|
| 220 |
-
input_img = input_img.unsqueeze(0)
|
| 221 |
-
if pupil_selection == "left_pupil":
|
| 222 |
-
left_eye = input_img
|
| 223 |
-
elif pupil_selection == "right_pupil":
|
| 224 |
-
right_eye = input_img
|
| 225 |
else:
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
"
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
# print("type of left_eye = ", type(left_eye))
|
| 239 |
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
# print("type of left_eye = ", type(left_eye))
|
| 242 |
-
|
| 243 |
-
left_eye = left_eye.unsqueeze(0)
|
| 244 |
-
if (
|
| 245 |
-
"right_eye" in ds_results["eyes"].keys()
|
| 246 |
-
and ds_results["eyes"]["right_eye"] is not None
|
| 247 |
-
):
|
| 248 |
-
right_eye = ds_results["eyes"]["right_eye"]
|
| 249 |
# print("type of right_eye = ", type(right_eye))
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
# print("type of right_eye = ", type(right_eye))
|
| 252 |
|
| 253 |
-
|
| 254 |
-
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
input_img = input_img.unsqueeze(0)
|
| 261 |
-
if pupil_selection == "left_pupil":
|
| 262 |
-
left_eye = input_img
|
| 263 |
elif pupil_selection == "right_pupil":
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
"
|
| 285 |
-
|
| 286 |
-
"
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
)
|
|
|
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
|
|
|
|
|
|
| 314 |
)
|
| 315 |
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
)
|
| 333 |
-
|
| 334 |
-
# Convert input image and activation map to PIL images
|
| 335 |
-
input_image_pil = to_pil_image(input_img.squeeze(0))
|
| 336 |
-
activation_map_pil = to_pil_image(activation_map, mode="F")
|
| 337 |
-
|
| 338 |
-
# Create the overlayed CAM result
|
| 339 |
-
result = overlay_mask(
|
| 340 |
-
input_image_pil,
|
| 341 |
-
activation_map_pil,
|
| 342 |
-
alpha=0.5,
|
| 343 |
-
)
|
| 344 |
-
|
| 345 |
-
# Create a subplot with 1 row and 2 columns
|
| 346 |
-
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
| 347 |
-
|
| 348 |
-
# Display the input image
|
| 349 |
-
axs[0].imshow(input_image_pil)
|
| 350 |
-
axs[0].axis("off")
|
| 351 |
-
axs[0].set_title("Input Image")
|
| 352 |
-
|
| 353 |
-
# Display the overlayed CAM result
|
| 354 |
-
axs[1].imshow(result)
|
| 355 |
-
axs[1].axis("off")
|
| 356 |
-
axs[1].set_title("Overlayed CAM")
|
| 357 |
-
|
| 358 |
-
# Display the plot
|
| 359 |
-
cols[-1].pyplot(fig)
|
| 360 |
-
cols[-1].text(
|
| 361 |
-
f"eye image size: {input_img.shape[-1]} x {input_img.shape[-2]}"
|
| 362 |
-
)
|
| 363 |
|
| 364 |
|
| 365 |
if __name__ == "__main__":
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
import streamlit as st
|
| 11 |
import torch
|
| 12 |
+
import tempfile
|
| 13 |
from PIL import Image
|
| 14 |
from torchvision import models
|
| 15 |
from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor
|
|
|
|
| 63 |
return model
|
| 64 |
|
| 65 |
|
| 66 |
+
def extract_frames(video_path):
|
| 67 |
+
vidcap = cv2.VideoCapture(video_path)
|
| 68 |
+
frames = []
|
| 69 |
+
success, image = vidcap.read()
|
| 70 |
+
count = 0
|
| 71 |
+
while success:
|
| 72 |
+
# Convert the frame to RGB (cv2 uses BGR by default)
|
| 73 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 74 |
+
frames.append(image_rgb)
|
| 75 |
+
success, image = vidcap.read()
|
| 76 |
+
count += 1
|
| 77 |
+
vidcap.release()
|
| 78 |
+
return frames
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# Function to check if a file is an image
|
| 82 |
+
def is_image(file_extension):
|
| 83 |
+
return file_extension.lower() in ["png", "jpeg", "jpg"]
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# Function to check if a file is a video
|
| 87 |
+
def is_video(file_extension):
|
| 88 |
+
return file_extension.lower() in ["mp4", "avi", "mov", "mkv", "webm"]
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def resize_frame(frame, max_width, max_height):
|
| 92 |
+
image = Image.fromarray(frame)
|
| 93 |
+
original_size = image.size
|
| 94 |
+
|
| 95 |
+
# Resize the frame similarly to the image resizing logic
|
| 96 |
+
if original_size[0] == original_size[1] and original_size[0] >= 256:
|
| 97 |
+
max_size = (256, 256)
|
| 98 |
+
else:
|
| 99 |
+
max_size = list(original_size)
|
| 100 |
+
if original_size[0] >= 640:
|
| 101 |
+
max_size[0] = 640
|
| 102 |
+
elif original_size[0] < 64:
|
| 103 |
+
max_size[0] = 64
|
| 104 |
+
if original_size[1] >= 480:
|
| 105 |
+
max_size[1] = 480
|
| 106 |
+
elif original_size[1] < 32:
|
| 107 |
+
max_size[1] = 32
|
| 108 |
+
|
| 109 |
+
image.thumbnail(max_size)
|
| 110 |
+
return image
|
| 111 |
+
|
| 112 |
+
|
| 113 |
def main():
|
| 114 |
# Wide mode
|
| 115 |
st.set_page_config(page_title="Pupil Diameter Estimator", layout="wide")
|
|
|
|
| 132 |
st.set_option("deprecation.showfileUploaderEncoding", False)
|
| 133 |
# Choose your own image
|
| 134 |
uploaded_file = st.sidebar.file_uploader(
|
| 135 |
+
"Upload Image or Video", type=["png", "jpeg", "jpg", "mp4", "avi", "mov", "mkv", "webm"]
|
| 136 |
)
|
| 137 |
if uploaded_file is not None:
|
| 138 |
+
# Get file extension
|
| 139 |
+
file_extension = uploaded_file.name.split(".")[-1]
|
| 140 |
+
input_imgs = []
|
| 141 |
+
|
| 142 |
+
if is_image(file_extension):
|
| 143 |
+
input_img = Image.open(BytesIO(uploaded_file.read()), mode="r").convert("RGB")
|
| 144 |
+
# print("input_img before = ", input_img.size)
|
| 145 |
+
max_size = [input_img.size[0], input_img.size[1]]
|
| 146 |
+
cols[0].text(f"Input Image: {max_size[0]} x {max_size[1]}")
|
| 147 |
+
if input_img.size[0] == input_img.size[1] and input_img.size[0] >= 256:
|
| 148 |
+
max_size[0] = 256
|
| 149 |
+
max_size[1] = 256
|
| 150 |
+
else:
|
| 151 |
+
if input_img.size[0] >= 640:
|
| 152 |
+
max_size[0] = 640
|
| 153 |
+
elif input_img.size[0] < 64:
|
| 154 |
+
max_size[0] = 64
|
| 155 |
+
if input_img.size[1] >= 480:
|
| 156 |
+
max_size[1] = 480
|
| 157 |
+
elif input_img.size[1] < 32:
|
| 158 |
+
max_size[1] = 32
|
| 159 |
+
input_img.thumbnail((max_size[0], max_size[1])) # Bicubic resampling
|
| 160 |
+
input_imgs.append(input_img)
|
| 161 |
+
# print("input_img after = ", input_img.size)
|
| 162 |
+
# cols[0].image(input_img)
|
| 163 |
+
fig0, axs0 = plt.subplots(1, 1, figsize=(10, 10))
|
| 164 |
+
# Display the input image
|
| 165 |
+
axs0.imshow(input_imgs[0])
|
| 166 |
+
axs0.axis("off")
|
| 167 |
+
axs0.set_title("Input Image")
|
| 168 |
+
|
| 169 |
+
# Display the plot
|
| 170 |
+
cols[0].pyplot(fig0)
|
| 171 |
+
cols[0].text(f"Input Image Resized: {max_size[0]} x {max_size[1]}")
|
| 172 |
+
|
| 173 |
+
# TODO: show the face features extracted from the image under 'input image' column
|
| 174 |
+
elif is_video(file_extension):
|
| 175 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
| 176 |
+
tfile.write(uploaded_file.read())
|
| 177 |
+
video_path = tfile.name
|
| 178 |
+
|
| 179 |
+
# Extract frames from the video
|
| 180 |
+
frames = extract_frames(video_path)
|
| 181 |
+
print(f"Extracted {len(frames)} frames from the video")
|
| 182 |
+
|
| 183 |
+
# Process the frames
|
| 184 |
+
for i, frame in enumerate(frames):
|
| 185 |
+
input_imgs.append(resize_frame(frame, 640, 480))
|
| 186 |
+
|
| 187 |
+
os.remove(video_path)
|
| 188 |
+
|
| 189 |
+
fig0, axs0 = plt.subplots(1, 1, figsize=(10, 10))
|
| 190 |
+
# Display the input image
|
| 191 |
+
axs0.imshow(input_imgs[0])
|
| 192 |
+
axs0.axis("off")
|
| 193 |
+
axs0.set_title("Input Image")
|
| 194 |
+
|
| 195 |
+
# Display the plot
|
| 196 |
+
cols[0].pyplot(fig0)
|
| 197 |
+
# cols[0].text(f"Input Image Resized: {max_size[0]} x {max_size[1]}")
|
| 198 |
|
| 199 |
st.sidebar.title("Setup")
|
| 200 |
|
|
|
|
| 250 |
|
| 251 |
else:
|
| 252 |
with st.spinner("Analyzing..."):
|
| 253 |
+
model = None
|
| 254 |
+
for input_img in input_imgs:
|
| 255 |
+
if upscale == "-":
|
| 256 |
+
sr_configs = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
else:
|
| 258 |
+
sr_configs = {
|
| 259 |
+
"method": upscale_method_or_model,
|
| 260 |
+
"params": {"upscale": upscale},
|
| 261 |
+
}
|
| 262 |
+
config_file = {
|
| 263 |
+
"sr_configs": sr_configs,
|
| 264 |
+
"feature_extraction_configs": {
|
| 265 |
+
"blink_detection": False,
|
| 266 |
+
"upscale": upscale,
|
| 267 |
+
"extraction_library": "mediapipe",
|
| 268 |
+
},
|
| 269 |
+
}
|
|
|
|
| 270 |
|
| 271 |
+
img = np.array(input_img)
|
| 272 |
+
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 273 |
+
# if img.shape[0] > max_size or img.shape[1] > max_size:
|
| 274 |
+
# img = cv2.resize(img, (max_size, max_size))
|
| 275 |
+
|
| 276 |
+
ds_results = EyeDentityDatasetCreation(
|
| 277 |
+
feature_extraction_configs=config_file["feature_extraction_configs"],
|
| 278 |
+
sr_configs=config_file["sr_configs"],
|
| 279 |
+
)(img)
|
| 280 |
+
# if ds_results is not None:
|
| 281 |
+
# print("ds_results = ", ds_results.keys())
|
| 282 |
+
|
| 283 |
+
preprocess_steps = [
|
| 284 |
+
transforms.ToTensor(),
|
| 285 |
+
transforms.Resize(
|
| 286 |
+
[32, 64],
|
| 287 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
| 288 |
+
interpolation=transforms.InterpolationMode.BICUBIC,
|
| 289 |
+
antialias=True,
|
| 290 |
+
),
|
| 291 |
+
]
|
| 292 |
+
preprocess_function = transforms.Compose(preprocess_steps)
|
| 293 |
+
|
| 294 |
+
left_eye = None
|
| 295 |
+
right_eye = None
|
| 296 |
+
|
| 297 |
+
if ds_results is None:
|
| 298 |
+
# print("type of input_img = ", type(input_img))
|
| 299 |
+
input_img = preprocess_function(input_img)
|
| 300 |
+
input_img = input_img.unsqueeze(0)
|
| 301 |
+
if pupil_selection == "left_pupil":
|
| 302 |
+
left_eye = input_img
|
| 303 |
+
elif pupil_selection == "right_pupil":
|
| 304 |
+
right_eye = input_img
|
| 305 |
+
else:
|
| 306 |
+
left_eye = input_img
|
| 307 |
+
right_eye = input_img
|
| 308 |
# print("type of left_eye = ", type(left_eye))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
# print("type of right_eye = ", type(right_eye))
|
| 310 |
+
elif "eyes" in ds_results.keys():
|
| 311 |
+
if "left_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["left_eye"] is not None:
|
| 312 |
+
left_eye = ds_results["eyes"]["left_eye"]
|
| 313 |
+
# print("type of left_eye = ", type(left_eye))
|
| 314 |
+
left_eye = to_pil_image(left_eye).convert("RGB")
|
| 315 |
+
# print("type of left_eye = ", type(left_eye))
|
| 316 |
+
|
| 317 |
+
left_eye = preprocess_function(left_eye)
|
| 318 |
+
# print("type of left_eye = ", type(left_eye))
|
| 319 |
+
|
| 320 |
+
left_eye = left_eye.unsqueeze(0)
|
| 321 |
+
if "right_eye" in ds_results["eyes"].keys() and ds_results["eyes"]["right_eye"] is not None:
|
| 322 |
+
right_eye = ds_results["eyes"]["right_eye"]
|
| 323 |
+
# print("type of right_eye = ", type(right_eye))
|
| 324 |
+
right_eye = to_pil_image(right_eye).convert("RGB")
|
| 325 |
+
# print("type of right_eye = ", type(right_eye))
|
| 326 |
+
|
| 327 |
+
right_eye = preprocess_function(right_eye)
|
| 328 |
+
# print("type of right_eye = ", type(right_eye))
|
| 329 |
+
|
| 330 |
+
right_eye = right_eye.unsqueeze(0)
|
| 331 |
+
else:
|
| 332 |
+
# print("type of input_img = ", type(input_img))
|
| 333 |
+
input_img = preprocess_function(input_img)
|
| 334 |
+
input_img = input_img.unsqueeze(0)
|
| 335 |
+
if pupil_selection == "left_pupil":
|
| 336 |
+
left_eye = input_img
|
| 337 |
+
elif pupil_selection == "right_pupil":
|
| 338 |
+
right_eye = input_img
|
| 339 |
+
else:
|
| 340 |
+
left_eye = input_img
|
| 341 |
+
right_eye = input_img
|
| 342 |
+
# print("type of left_eye = ", type(left_eye))
|
| 343 |
# print("type of right_eye = ", type(right_eye))
|
| 344 |
|
| 345 |
+
# print("left_eye = ", left_eye.shape)
|
| 346 |
+
# print("right_eye = ", right_eye.shape)
|
| 347 |
|
| 348 |
+
if pupil_selection == "-":
|
| 349 |
+
selected_eyes = ["left_eye", "right_eye"]
|
| 350 |
+
elif pupil_selection == "left_pupil":
|
| 351 |
+
selected_eyes = ["left_eye"]
|
|
|
|
|
|
|
|
|
|
| 352 |
elif pupil_selection == "right_pupil":
|
| 353 |
+
selected_eyes = ["right_eye"]
|
| 354 |
+
|
| 355 |
+
for eye_type in selected_eyes:
|
| 356 |
+
|
| 357 |
+
if model is None:
|
| 358 |
+
model_configs = {
|
| 359 |
+
"model_path": root_path + f"/pre_trained_models/{tv_model}/{eye_type}.pt",
|
| 360 |
+
"registered_model_name": tv_model,
|
| 361 |
+
"num_classes": 1,
|
| 362 |
+
}
|
| 363 |
+
registered_model_name = model_configs["registered_model_name"]
|
| 364 |
+
model = _load_model(model_configs)
|
| 365 |
+
|
| 366 |
+
if registered_model_name == "ResNet18":
|
| 367 |
+
target_layer = model.resnet.layer4[-1].conv2
|
| 368 |
+
elif registered_model_name == "ResNet50":
|
| 369 |
+
target_layer = model.resnet.layer4[-1].conv3
|
| 370 |
+
else:
|
| 371 |
+
raise Exception(f"No target layer available for selected model: {registered_model_name}")
|
| 372 |
+
|
| 373 |
+
if left_eye is not None and eye_type == "left_eye":
|
| 374 |
+
input_img = left_eye
|
| 375 |
+
elif right_eye is not None and eye_type == "right_eye":
|
| 376 |
+
input_img = right_eye
|
| 377 |
+
else:
|
| 378 |
+
raise Exception("Wrong Data")
|
| 379 |
+
|
| 380 |
+
if cam_method is not None:
|
| 381 |
+
cam_extractor = torchcam_methods.__dict__[cam_method](
|
| 382 |
+
model,
|
| 383 |
+
target_layer=target_layer,
|
| 384 |
+
fc_layer=model.resnet.fc,
|
| 385 |
+
input_shape=input_img.shape,
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
# with torch.no_grad():
|
| 389 |
+
out = model(input_img)
|
| 390 |
+
cols[-1].markdown(
|
| 391 |
+
f"<h3>Predicted Pupil Diameter: {out[0].item():.2f} mm</h3>",
|
| 392 |
+
unsafe_allow_html=True,
|
| 393 |
)
|
| 394 |
+
# cols[-1].text(f"Predicted Pupil Diameter: {out[0].item():.2f}")
|
| 395 |
|
| 396 |
+
# Retrieve the CAM
|
| 397 |
+
act_maps = cam_extractor(0, out)
|
| 398 |
+
|
| 399 |
+
# Fuse the CAMs if there are several
|
| 400 |
+
activation_map = act_maps[0] if len(act_maps) == 1 else cam_extractor.fuse_cams(act_maps)
|
| 401 |
+
|
| 402 |
+
# Convert input image and activation map to PIL images
|
| 403 |
+
input_image_pil = to_pil_image(input_img.squeeze(0))
|
| 404 |
+
activation_map_pil = to_pil_image(activation_map, mode="F")
|
| 405 |
+
|
| 406 |
+
# Create the overlayed CAM result
|
| 407 |
+
result = overlay_mask(
|
| 408 |
+
input_image_pil,
|
| 409 |
+
activation_map_pil,
|
| 410 |
+
alpha=0.5,
|
| 411 |
)
|
| 412 |
|
| 413 |
+
# Create a subplot with 1 row and 2 columns
|
| 414 |
+
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
|
| 415 |
+
|
| 416 |
+
# Display the input image
|
| 417 |
+
axs[0].imshow(input_image_pil)
|
| 418 |
+
axs[0].axis("off")
|
| 419 |
+
axs[0].set_title("Input Image")
|
| 420 |
+
|
| 421 |
+
# Display the overlayed CAM result
|
| 422 |
+
axs[1].imshow(result)
|
| 423 |
+
axs[1].axis("off")
|
| 424 |
+
axs[1].set_title("Overlayed CAM")
|
| 425 |
+
|
| 426 |
+
# Display the plot
|
| 427 |
+
cols[-1].pyplot(fig)
|
| 428 |
+
cols[-1].text(f"eye image size: {input_img.shape[-1]} x {input_img.shape[-2]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
|
| 431 |
if __name__ == "__main__":
|