Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,8 @@ import re
|
|
| 4 |
import gradio as gr
|
| 5 |
from threading import Thread
|
| 6 |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
| 7 |
|
| 8 |
import subprocess
|
| 9 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
@@ -39,6 +41,35 @@ def answer_question(img, prompt):
|
|
| 39 |
buffer += new_text
|
| 40 |
yield buffer.strip()
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
with gr.Blocks() as demo:
|
| 44 |
gr.Markdown(
|
|
@@ -52,8 +83,12 @@ with gr.Blocks() as demo:
|
|
| 52 |
submit = gr.Button("Submit")
|
| 53 |
with gr.Row():
|
| 54 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
| 56 |
submit.click(answer_question, [img, prompt], output)
|
| 57 |
prompt.submit(answer_question, [img, prompt], output)
|
|
|
|
| 58 |
|
| 59 |
demo.queue().launch()
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
from threading import Thread
|
| 6 |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
| 7 |
+
from PIL import ImageDraw
|
| 8 |
+
from torchvision.transforms.v2 import Resize
|
| 9 |
|
| 10 |
import subprocess
|
| 11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
|
|
| 41 |
buffer += new_text
|
| 42 |
yield buffer.strip()
|
| 43 |
|
| 44 |
+
def extract_floats(text):
|
| 45 |
+
# Regular expression to match an array of four floating point numbers
|
| 46 |
+
pattern = r"\[\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*\]"
|
| 47 |
+
match = re.search(pattern, text)
|
| 48 |
+
if match:
|
| 49 |
+
# Extract the numbers and convert them to floats
|
| 50 |
+
return [float(num) for num in match.groups()]
|
| 51 |
+
return None # Return None if no match is found
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def extract_bbox(text):
|
| 55 |
+
bbox = None
|
| 56 |
+
if extract_floats(text) is not None:
|
| 57 |
+
x1, y1, x2, y2 = extract_floats(text)
|
| 58 |
+
bbox = (x1, y1, x2, y2)
|
| 59 |
+
return bbox
|
| 60 |
+
|
| 61 |
+
def process_answer(img, answer):
|
| 62 |
+
if extract_bbox(answer) is not None:
|
| 63 |
+
x1, y1, x2, y2 = extract_bbox(answer)
|
| 64 |
+
draw_image = Resize(768)(img)
|
| 65 |
+
width, height = draw_image.size
|
| 66 |
+
x1, x2 = int(x1 * width), int(x2 * width)
|
| 67 |
+
y1, y2 = int(y1 * height), int(y2 * height)
|
| 68 |
+
bbox = (x1, y1, x2, y2)
|
| 69 |
+
ImageDraw.Draw(draw_image).rectangle(bbox, outline="red", width=3)
|
| 70 |
+
return gr.update(visible=True, value=draw_image)
|
| 71 |
+
|
| 72 |
+
return gr.update(visible=False, value=None)
|
| 73 |
|
| 74 |
with gr.Blocks() as demo:
|
| 75 |
gr.Markdown(
|
|
|
|
| 83 |
submit = gr.Button("Submit")
|
| 84 |
with gr.Row():
|
| 85 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 86 |
+
with gr.Column():
|
| 87 |
+
output = gr.Markdown(label="Response")
|
| 88 |
+
ann = gr.Image(visible=False, label="Annotated Image")
|
| 89 |
+
|
| 90 |
submit.click(answer_question, [img, prompt], output)
|
| 91 |
prompt.submit(answer_question, [img, prompt], output)
|
| 92 |
+
output.change(process_answer, [img, output], ann, show_progress=False)
|
| 93 |
|
| 94 |
demo.queue().launch()
|