Spaces:
Runtime error
Runtime error
| import os | |
| import time | |
| #import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| import gradio as gr | |
| from threading import Thread | |
| MODEL_LIST = ["HuggingFaceTB/SmolLM-1.7B-Instruct", "HuggingFaceTB/SmolLM-135M-Instruct", "HuggingFaceTB/SmolLM-360M-Instruct"] | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| TITLE = "<h1><center>SmolLM-Instruct</center></h1>" | |
| PLACEHOLDER = """ | |
| <center> | |
| <p>SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters.</p> | |
| </center> | |
| """ | |
| CSS = """ | |
| .duplicate-button { | |
| margin: auto !important; | |
| color: white !important; | |
| background: black !important; | |
| border-radius: 100vh !important; | |
| } | |
| h3 { | |
| text-align: center; | |
| } | |
| """ | |
| # pip install transformers | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| device = "cpu" # for GPU usage or "cpu" for CPU usage | |
| tokenizer0 = AutoTokenizer.from_pretrained(MODEL_LIST[0]) | |
| model0 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[0]).to(device) | |
| tokenizer1 = AutoTokenizer.from_pretrained(MODEL_LIST[1]) | |
| model1 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[1]).to(device) | |
| tokenizer2 = AutoTokenizer.from_pretrained(MODEL_LIST[2]) | |
| model2 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[2]).to(device) | |
| #@spaces.GPU() | |
| def stream_chat( | |
| message: str, | |
| history: list, | |
| temperature: float = 0.8, | |
| max_new_tokens: int = 1024, | |
| top_p: float = 1.0, | |
| top_k: int = 20, | |
| penalty: float = 1.2, | |
| choice: str = "135M" | |
| ): | |
| print(f'message: {message}') | |
| print(f'history: {history}') | |
| conversation = [] | |
| for prompt, answer in history: | |
| conversation.extend([ | |
| {"role": "user", "content": prompt}, | |
| {"role": "assistant", "content": answer}, | |
| ]) | |
| conversation.append({"role": "user", "content": message}) | |
| if choice == "1.7B": | |
| tokenizer = tokenizer0 | |
| model = model0 | |
| elif choice == "135M": | |
| model = model1 | |
| tokenizer = tokenizer1 | |
| else: | |
| model = model2 | |
| tokenizer = tokenizer2 | |
| input_text=tokenizer.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) | |
| inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| input_ids=inputs, | |
| max_new_tokens = max_new_tokens, | |
| do_sample = False if temperature == 0 else True, | |
| top_p = top_p, | |
| top_k = top_k, | |
| temperature = temperature, | |
| streamer=streamer, | |
| ) | |
| with torch.no_grad(): | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer | |
| #print(tokenizer.decode(outputs[0])) | |
| chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) | |
| with gr.Blocks(css=CSS, theme="soft") as demo: | |
| gr.HTML(TITLE) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
| gr.ChatInterface( | |
| fn=stream_chat, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.8, | |
| label="Temperature", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=128, | |
| maximum=8192, | |
| step=1, | |
| value=1024, | |
| label="Max new tokens", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| label="top_p", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=20, | |
| label="top_k", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=2.0, | |
| step=0.1, | |
| value=1.2, | |
| label="Repetition penalty", | |
| render=False, | |
| ), | |
| gr.Radio( | |
| ["135M", "360M", "1.7B"], | |
| value="135M", | |
| label="Load Model", | |
| render=False, | |
| ), | |
| ], | |
| examples=[ | |
| ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], | |
| ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], | |
| ["Tell me a random fun fact about the Roman Empire."], | |
| ["Show me a code snippet of a website's sticky header in CSS and JavaScript."], | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |