Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from langchain_groq import ChatGroq
|
| 5 |
+
from langchain.document_loaders import PyPDFLoader
|
| 6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 8 |
+
from langchain.vectorstores import FAISS
|
| 9 |
+
from langchain.chains import RetrievalQA
|
| 10 |
+
|
| 11 |
+
# Load environment variables from .env file
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
def main():
|
| 15 |
+
# Retrieve API key from environment variables
|
| 16 |
+
groq_api_key = GROQ_API_KEY='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'
|
| 17 |
+
|
| 18 |
+
# Verify API key is loaded
|
| 19 |
+
if not groq_api_key:
|
| 20 |
+
st.error("GROQ API Key not found. Please check your .env file.")
|
| 21 |
+
return
|
| 22 |
+
|
| 23 |
+
st.title("PDF Chat with Groq LLM")
|
| 24 |
+
|
| 25 |
+
# File uploader
|
| 26 |
+
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
| 27 |
+
|
| 28 |
+
if uploaded_file is not None:
|
| 29 |
+
# Save the uploaded PDF temporarily
|
| 30 |
+
with open("temp.pdf", "wb") as f:
|
| 31 |
+
f.write(uploaded_file.getbuffer())
|
| 32 |
+
|
| 33 |
+
# Load the PDF
|
| 34 |
+
loader = PyPDFLoader("temp.pdf")
|
| 35 |
+
pages = loader.load()
|
| 36 |
+
|
| 37 |
+
# Split the text
|
| 38 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 39 |
+
chunk_size=1000,
|
| 40 |
+
chunk_overlap=200
|
| 41 |
+
)
|
| 42 |
+
texts = text_splitter.split_documents(pages)
|
| 43 |
+
|
| 44 |
+
# Create embeddings
|
| 45 |
+
embeddings = HuggingFaceEmbeddings(
|
| 46 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Create vector store
|
| 50 |
+
vectorstore = FAISS.from_documents(texts, embeddings)
|
| 51 |
+
|
| 52 |
+
# Initialize Groq LLM with API key
|
| 53 |
+
llm = ChatGroq(
|
| 54 |
+
temperature=0.7,
|
| 55 |
+
model_name='llama3-70b-8192',
|
| 56 |
+
api_key=groq_api_key
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Create QA chain
|
| 60 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 61 |
+
llm=llm,
|
| 62 |
+
chain_type="stuff",
|
| 63 |
+
retriever=vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Chat input
|
| 67 |
+
query = st.text_input("Ask a question about the PDF:")
|
| 68 |
+
|
| 69 |
+
if query:
|
| 70 |
+
# Get response
|
| 71 |
+
response = qa_chain.invoke(query)
|
| 72 |
+
st.write("Response:", response['result'])
|
| 73 |
+
|
| 74 |
+
if __name__ == "__main__":
|
| 75 |
+
main()
|