Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import contextlib | |
| import os | |
| import random | |
| import warnings | |
| from dataclasses import dataclass | |
| from typing import Any, Callable, Optional, Union | |
| import numpy as np | |
| import torch | |
| import torch.utils.checkpoint as checkpoint | |
| from diffusers import DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg | |
| from transformers.utils import is_peft_available | |
| from ..core import randn_tensor | |
| from .sd_utils import convert_state_dict_to_diffusers | |
| if is_peft_available(): | |
| from peft import LoraConfig | |
| from peft.utils import get_peft_model_state_dict | |
| class DDPOPipelineOutput: | |
| """ | |
| Output class for the diffusers pipeline to be finetuned with the DDPO trainer | |
| Args: | |
| images (`torch.Tensor`): | |
| The generated images. | |
| latents (`list[torch.Tensor]`): | |
| The latents used to generate the images. | |
| log_probs (`list[torch.Tensor]`): | |
| The log probabilities of the latents. | |
| """ | |
| images: torch.Tensor | |
| latents: torch.Tensor | |
| log_probs: torch.Tensor | |
| class DDPOSchedulerOutput: | |
| """ | |
| Output class for the diffusers scheduler to be finetuned with the DDPO trainer | |
| Args: | |
| latents (`torch.Tensor`): | |
| Predicted sample at the previous timestep. Shape: `(batch_size, num_channels, height, width)` | |
| log_probs (`torch.Tensor`): | |
| Log probability of the above mentioned sample. Shape: `(batch_size)` | |
| """ | |
| latents: torch.Tensor | |
| log_probs: torch.Tensor | |
| class DDPOStableDiffusionPipeline: | |
| """ | |
| Main class for the diffusers pipeline to be finetuned with the DDPO trainer | |
| """ | |
| def __call__(self, *args, **kwargs) -> DDPOPipelineOutput: | |
| raise NotImplementedError | |
| def scheduler_step(self, *args, **kwargs) -> DDPOSchedulerOutput: | |
| raise NotImplementedError | |
| def unet(self): | |
| """ | |
| Returns the 2d U-Net model used for diffusion. | |
| """ | |
| raise NotImplementedError | |
| def vae(self): | |
| """ | |
| Returns the Variational Autoencoder model used from mapping images to and from the latent space | |
| """ | |
| raise NotImplementedError | |
| def tokenizer(self): | |
| """ | |
| Returns the tokenizer used for tokenizing text inputs | |
| """ | |
| raise NotImplementedError | |
| def scheduler(self): | |
| """ | |
| Returns the scheduler associated with the pipeline used for the diffusion process | |
| """ | |
| raise NotImplementedError | |
| def text_encoder(self): | |
| """ | |
| Returns the text encoder used for encoding text inputs | |
| """ | |
| raise NotImplementedError | |
| def autocast(self): | |
| """ | |
| Returns the autocast context manager | |
| """ | |
| raise NotImplementedError | |
| def set_progress_bar_config(self, *args, **kwargs): | |
| """ | |
| Sets the progress bar config for the pipeline | |
| """ | |
| raise NotImplementedError | |
| def save_pretrained(self, *args, **kwargs): | |
| """ | |
| Saves all of the model weights | |
| """ | |
| raise NotImplementedError | |
| def get_trainable_layers(self, *args, **kwargs): | |
| """ | |
| Returns the trainable parameters of the pipeline | |
| """ | |
| raise NotImplementedError | |
| def save_checkpoint(self, *args, **kwargs): | |
| """ | |
| Light wrapper around accelerate's register_save_state_pre_hook which is run before saving state | |
| """ | |
| raise NotImplementedError | |
| def load_checkpoint(self, *args, **kwargs): | |
| """ | |
| Light wrapper around accelerate's register_lad_state_pre_hook which is run before loading state | |
| """ | |
| raise NotImplementedError | |
| def _left_broadcast(input_tensor, shape): | |
| """ | |
| As opposed to the default direction of broadcasting (right to left), this function broadcasts from left to right | |
| Args: | |
| input_tensor (`torch.FloatTensor`): is the tensor to broadcast | |
| shape (`tuple[int]`): is the shape to broadcast to | |
| """ | |
| input_ndim = input_tensor.ndim | |
| if input_ndim > len(shape): | |
| raise ValueError( | |
| "The number of dimensions of the tensor to broadcast cannot be greater than the length of the shape to broadcast to" | |
| ) | |
| return input_tensor.reshape(input_tensor.shape + (1,) * (len(shape) - input_ndim)).broadcast_to(shape) | |
| def _get_variance(self, timestep, prev_timestep): | |
| alpha_prod_t = torch.gather(self.alphas_cumprod, 0, timestep.cpu()).to(timestep.device) | |
| alpha_prod_t_prev = torch.where( | |
| prev_timestep.cpu() >= 0, | |
| self.alphas_cumprod.gather(0, prev_timestep.cpu()), | |
| self.final_alpha_cumprod, | |
| ).to(timestep.device) | |
| beta_prod_t = 1 - alpha_prod_t | |
| beta_prod_t_prev = 1 - alpha_prod_t_prev | |
| variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) | |
| return variance | |
| def scheduler_step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| eta: float = 0.0, | |
| use_clipped_model_output: bool = False, | |
| generator=None, | |
| prev_sample: Optional[torch.FloatTensor] = None, | |
| ) -> DDPOSchedulerOutput: | |
| """ | |
| Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process | |
| from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| current instance of sample being created by diffusion process. | |
| eta (`float`): weight of noise for added noise in diffusion step. | |
| use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped | |
| predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when | |
| `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would coincide | |
| with the one provided as input and `use_clipped_model_output` will have not effect. | |
| generator: random number generator. | |
| variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we | |
| can directly provide the noise for the variance itself. This is useful for methods such as CycleDiffusion. | |
| (https://huggingface.co/papers/2210.05559) | |
| Returns: | |
| `DDPOSchedulerOutput`: the predicted sample at the previous timestep and the log probability of the sample | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| # See formulas (12) and (16) of DDIM paper https://huggingface.co/papers/2010.02502 | |
| # Ideally, read DDIM paper in-detail understanding | |
| # Notation (<variable name> -> <name in paper> | |
| # - pred_noise_t -> e_theta(x_t, t) | |
| # - pred_original_sample -> f_theta(x_t, t) or x_0 | |
| # - std_dev_t -> sigma_t | |
| # - eta -> η | |
| # - pred_sample_direction -> "direction pointing to x_t" | |
| # - pred_prev_sample -> "x_t-1" | |
| # 1. get previous step value (=t-1) | |
| prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps | |
| # to prevent OOB on gather | |
| prev_timestep = torch.clamp(prev_timestep, 0, self.config.num_train_timesteps - 1) | |
| # 2. compute alphas, betas | |
| alpha_prod_t = self.alphas_cumprod.gather(0, timestep.cpu()) | |
| alpha_prod_t_prev = torch.where( | |
| prev_timestep.cpu() >= 0, | |
| self.alphas_cumprod.gather(0, prev_timestep.cpu()), | |
| self.final_alpha_cumprod, | |
| ) | |
| alpha_prod_t = _left_broadcast(alpha_prod_t, sample.shape).to(sample.device) | |
| alpha_prod_t_prev = _left_broadcast(alpha_prod_t_prev, sample.shape).to(sample.device) | |
| beta_prod_t = 1 - alpha_prod_t | |
| # 3. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502 | |
| if self.config.prediction_type == "epsilon": | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| pred_epsilon = model_output | |
| elif self.config.prediction_type == "sample": | |
| pred_original_sample = model_output | |
| pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
| elif self.config.prediction_type == "v_prediction": | |
| pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
| pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
| " `v_prediction`" | |
| ) | |
| # 4. Clip or threshold "predicted x_0" | |
| if self.config.thresholding: | |
| pred_original_sample = self._threshold_sample(pred_original_sample) | |
| elif self.config.clip_sample: | |
| pred_original_sample = pred_original_sample.clamp( | |
| -self.config.clip_sample_range, self.config.clip_sample_range | |
| ) | |
| # 5. compute variance: "sigma_t(η)" -> see formula (16) | |
| # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) | |
| variance = _get_variance(self, timestep, prev_timestep) | |
| std_dev_t = eta * variance ** (0.5) | |
| std_dev_t = _left_broadcast(std_dev_t, sample.shape).to(sample.device) | |
| if use_clipped_model_output: | |
| # the pred_epsilon is always re-derived from the clipped x_0 in Glide | |
| pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
| # 6. compute "direction pointing to x_t" of formula (12) from https://huggingface.co/papers/2010.02502 | |
| pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon | |
| # 7. compute x_t without "random noise" of formula (12) from https://huggingface.co/papers/2010.02502 | |
| prev_sample_mean = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
| if prev_sample is not None and generator is not None: | |
| raise ValueError( | |
| "Cannot pass both generator and prev_sample. Please make sure that either `generator` or" | |
| " `prev_sample` stays `None`." | |
| ) | |
| if prev_sample is None: | |
| variance_noise = randn_tensor( | |
| model_output.shape, | |
| generator=generator, | |
| device=model_output.device, | |
| dtype=model_output.dtype, | |
| ) | |
| prev_sample = prev_sample_mean + std_dev_t * variance_noise | |
| # log prob of prev_sample given prev_sample_mean and std_dev_t | |
| log_prob = ( | |
| -((prev_sample.detach() - prev_sample_mean) ** 2) / (2 * (std_dev_t**2)) | |
| - torch.log(std_dev_t) | |
| - torch.log(torch.sqrt(2 * torch.as_tensor(np.pi))) | |
| ) | |
| # mean along all but batch dimension | |
| log_prob = log_prob.mean(dim=tuple(range(1, log_prob.ndim))) | |
| return DDPOSchedulerOutput(prev_sample.type(sample.dtype), log_prob) | |
| # 1. The output type for call is different as the logprobs are now returned | |
| # 2. An extra method called `scheduler_step` is added which is used to constraint the scheduler output | |
| def pipeline_step( | |
| self, | |
| prompt: Optional[Union[str, list[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, list[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, list[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. Args: prompt (`str` or `list[str]`, *optional*): The | |
| prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height | |
| (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the | |
| generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense | |
| of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion | |
| Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. of | |
| [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting | |
| `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the | |
| text `prompt`, usually at the expense of lower image quality. | |
| negative_prompt (`str` or `list[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies | |
| to [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `list[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to | |
| make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): | |
| `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be called | |
| with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
| guidance_rescale (`float`, *optional*, defaults to 0.7): | |
| Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://huggingface.co/papers/2305.08891) `guidance_scale` is defined as `φ` in equation 16. of | |
| [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). | |
| Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
| Examples: | |
| Returns: | |
| `DDPOPipelineOutput`: The generated image, the predicted latents used to generate the image and the associated | |
| log probabilities | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| all_latents = [latents] | |
| all_log_probs = [] | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://huggingface.co/papers/2305.08891 | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| scheduler_output = scheduler_step(self.scheduler, noise_pred, t, latents, eta) | |
| latents = scheduler_output.latents | |
| log_prob = scheduler_output.log_probs | |
| all_latents.append(latents) | |
| all_log_probs.append(log_prob) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| return DDPOPipelineOutput(image, all_latents, all_log_probs) | |
| def pipeline_step_with_grad( | |
| pipeline, | |
| prompt: Optional[Union[str, list[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| truncated_backprop: bool = True, | |
| truncated_backprop_rand: bool = True, | |
| gradient_checkpoint: bool = True, | |
| truncated_backprop_timestep: int = 49, | |
| truncated_rand_backprop_minmax: tuple = (0, 50), | |
| negative_prompt: Optional[Union[str, list[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, list[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| ): | |
| r""" | |
| Function to get RGB image with gradients attached to the model weights. | |
| Args: | |
| prompt (`str` or `list[str]`, *optional*, defaults to `None`): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds` | |
| instead. | |
| height (`int`, *optional*, defaults to `pipeline.unet.config.sample_size * pipeline.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `pipeline.unet.config.sample_size * pipeline.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to `50`): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense | |
| of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to `7.5`): | |
| Guidance scale as defined in [Classifier-Free Diffusion | |
| Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. of | |
| [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting | |
| `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the | |
| text `prompt`, usually at the expense of lower image quality. | |
| truncated_backprop (`bool`, *optional*, defaults to True): | |
| Truncated Backpropation to fixed timesteps, helps prevent collapse during diffusion reward training as | |
| shown in AlignProp (https://huggingface.co/papers/2310.03739). | |
| truncated_backprop_rand (`bool`, *optional*, defaults to True): | |
| Truncated Randomized Backpropation randomizes truncation to different diffusion timesteps, this helps | |
| prevent collapse during diffusion reward training as shown in AlignProp | |
| (https://huggingface.co/papers/2310.03739). Enabling truncated_backprop_rand allows adapting earlier | |
| timesteps in diffusion while not resulting in a collapse. | |
| gradient_checkpoint (`bool`, *optional*, defaults to True): | |
| Adds gradient checkpointing to Unet forward pass. Reduces GPU memory consumption while slightly increasing | |
| the training time. | |
| truncated_backprop_timestep (`int`, *optional*, defaults to 49): | |
| Absolute timestep to which the gradients are being backpropagated. Higher number reduces the memory usage | |
| and reduces the chances of collapse. While a lower value, allows more semantic changes in the diffusion | |
| generations, as the earlier diffusion timesteps are getting updated. However it also increases the chances | |
| of collapse. | |
| truncated_rand_backprop_minmax (`Tuple`, *optional*, defaults to (0,50)): | |
| Range for randomized backprop. Here the value at 0 index indicates the earlier diffusion timestep to update | |
| (closer to noise), while the value at index 1 indicates the later diffusion timestep to update. | |
| negative_prompt (`str` or `list[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies | |
| to [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `list[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to | |
| make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): | |
| `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be called | |
| with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `pipeline.processor` in | |
| [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
| guidance_rescale (`float`, *optional*, defaults to 0.7): | |
| Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://huggingface.co/papers/2305.08891) `guidance_scale` is defined as `φ` in equation 16. of | |
| [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). | |
| Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
| Examples: | |
| Returns: | |
| `DDPOPipelineOutput`: The generated image, the predicted latents used to generate the image and the associated | |
| log probabilities | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or pipeline.unet.config.sample_size * pipeline.vae_scale_factor | |
| width = width or pipeline.unet.config.sample_size * pipeline.vae_scale_factor | |
| with torch.no_grad(): | |
| # 1. Check inputs. Raise error if not correct | |
| pipeline.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = pipeline._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds = pipeline._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| ) | |
| # 4. Prepare timesteps | |
| pipeline.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = pipeline.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = pipeline.unet.config.in_channels | |
| latents = pipeline.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order | |
| all_latents = [latents] | |
| all_log_probs = [] | |
| with pipeline.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| if gradient_checkpoint: | |
| noise_pred = checkpoint.checkpoint( | |
| pipeline.unet, | |
| latent_model_input, | |
| t, | |
| prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| use_reentrant=False, | |
| )[0] | |
| else: | |
| noise_pred = pipeline.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # truncating backpropagation is critical for preventing overoptimization (https://huggingface.co/papers/2304.05977). | |
| if truncated_backprop: | |
| # Randomized truncation randomizes the truncation process (https://huggingface.co/papers/2310.03739) | |
| # the range of truncation is defined by truncated_rand_backprop_minmax | |
| # Setting truncated_rand_backprop_minmax[0] to be low will allow the model to update earlier timesteps in the diffusion chain, while setitng it high will reduce the memory usage. | |
| if truncated_backprop_rand: | |
| rand_timestep = random.randint( | |
| truncated_rand_backprop_minmax[0], truncated_rand_backprop_minmax[1] | |
| ) | |
| if i < rand_timestep: | |
| noise_pred = noise_pred.detach() | |
| else: | |
| # fixed truncation process | |
| if i < truncated_backprop_timestep: | |
| noise_pred = noise_pred.detach() | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://huggingface.co/papers/2305.08891 | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| scheduler_output = scheduler_step(pipeline.scheduler, noise_pred, t, latents, eta) | |
| latents = scheduler_output.latents | |
| log_prob = scheduler_output.log_probs | |
| all_latents.append(latents) | |
| all_log_probs.append(log_prob) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if not output_type == "latent": | |
| image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = pipeline.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = pipeline.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload last model to CPU | |
| if hasattr(pipeline, "final_offload_hook") and pipeline.final_offload_hook is not None: | |
| pipeline.final_offload_hook.offload() | |
| return DDPOPipelineOutput(image, all_latents, all_log_probs) | |
| class DefaultDDPOStableDiffusionPipeline(DDPOStableDiffusionPipeline): | |
| def __init__(self, pretrained_model_name: str, *, pretrained_model_revision: str = "main", use_lora: bool = True): | |
| self.sd_pipeline = StableDiffusionPipeline.from_pretrained( | |
| pretrained_model_name, revision=pretrained_model_revision | |
| ) | |
| self.use_lora = use_lora | |
| self.pretrained_model = pretrained_model_name | |
| self.pretrained_revision = pretrained_model_revision | |
| try: | |
| self.sd_pipeline.load_lora_weights( | |
| pretrained_model_name, | |
| weight_name="pytorch_lora_weights.safetensors", | |
| revision=pretrained_model_revision, | |
| ) | |
| self.use_lora = True | |
| except OSError: | |
| if use_lora: | |
| warnings.warn( | |
| "Trying to load LoRA weights but no LoRA weights found. Set `use_lora=False` or check that " | |
| "`pytorch_lora_weights.safetensors` exists in the model folder.", | |
| UserWarning, | |
| ) | |
| self.sd_pipeline.scheduler = DDIMScheduler.from_config(self.sd_pipeline.scheduler.config) | |
| self.sd_pipeline.safety_checker = None | |
| # memory optimization | |
| self.sd_pipeline.vae.requires_grad_(False) | |
| self.sd_pipeline.text_encoder.requires_grad_(False) | |
| self.sd_pipeline.unet.requires_grad_(not self.use_lora) | |
| def __call__(self, *args, **kwargs) -> DDPOPipelineOutput: | |
| return pipeline_step(self.sd_pipeline, *args, **kwargs) | |
| def rgb_with_grad(self, *args, **kwargs) -> DDPOPipelineOutput: | |
| return pipeline_step_with_grad(self.sd_pipeline, *args, **kwargs) | |
| def scheduler_step(self, *args, **kwargs) -> DDPOSchedulerOutput: | |
| return scheduler_step(self.sd_pipeline.scheduler, *args, **kwargs) | |
| def unet(self): | |
| return self.sd_pipeline.unet | |
| def vae(self): | |
| return self.sd_pipeline.vae | |
| def tokenizer(self): | |
| return self.sd_pipeline.tokenizer | |
| def scheduler(self): | |
| return self.sd_pipeline.scheduler | |
| def text_encoder(self): | |
| return self.sd_pipeline.text_encoder | |
| def autocast(self): | |
| return contextlib.nullcontext if self.use_lora else None | |
| def save_pretrained(self, output_dir): | |
| if self.use_lora: | |
| state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(self.sd_pipeline.unet)) | |
| self.sd_pipeline.save_lora_weights(save_directory=output_dir, unet_lora_layers=state_dict) | |
| self.sd_pipeline.save_pretrained(output_dir) | |
| def set_progress_bar_config(self, *args, **kwargs): | |
| self.sd_pipeline.set_progress_bar_config(*args, **kwargs) | |
| def get_trainable_layers(self): | |
| if self.use_lora: | |
| lora_config = LoraConfig( | |
| r=4, | |
| lora_alpha=4, | |
| init_lora_weights="gaussian", | |
| target_modules=["to_k", "to_q", "to_v", "to_out.0"], | |
| ) | |
| self.sd_pipeline.unet.add_adapter(lora_config) | |
| # To avoid accelerate unscaling problems in FP16. | |
| for param in self.sd_pipeline.unet.parameters(): | |
| # only upcast trainable parameters (LoRA) into fp32 | |
| if param.requires_grad: | |
| param.data = param.to(torch.float32) | |
| return self.sd_pipeline.unet | |
| else: | |
| return self.sd_pipeline.unet | |
| def save_checkpoint(self, models, weights, output_dir): | |
| if len(models) != 1: | |
| raise ValueError("Given how the trainable params were set, this should be of length 1") | |
| if self.use_lora and hasattr(models[0], "peft_config") and getattr(models[0], "peft_config", None) is not None: | |
| state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(models[0])) | |
| self.sd_pipeline.save_lora_weights(save_directory=output_dir, unet_lora_layers=state_dict) | |
| elif not self.use_lora and isinstance(models[0], UNet2DConditionModel): | |
| models[0].save_pretrained(os.path.join(output_dir, "unet")) | |
| else: | |
| raise ValueError(f"Unknown model type {type(models[0])}") | |
| def load_checkpoint(self, models, input_dir): | |
| if len(models) != 1: | |
| raise ValueError("Given how the trainable params were set, this should be of length 1") | |
| if self.use_lora: | |
| lora_state_dict, network_alphas = self.sd_pipeline.lora_state_dict( | |
| input_dir, weight_name="pytorch_lora_weights.safetensors" | |
| ) | |
| self.sd_pipeline.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=models[0]) | |
| elif not self.use_lora and isinstance(models[0], UNet2DConditionModel): | |
| load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") | |
| models[0].register_to_config(**load_model.config) | |
| models[0].load_state_dict(load_model.state_dict()) | |
| del load_model | |
| else: | |
| raise ValueError(f"Unknown model type {type(models[0])}") | |