Spaces:
Paused
Paused
| import torch | |
| from nodes import VAEEncode | |
| class VAEDecodeBatched: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "samples": ("LATENT", ), | |
| "vae": ("VAE", ), | |
| "per_batch": ("INT", {"default": 16, "min": 1}) | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/batched nodes" | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "decode" | |
| def decode(self, vae, samples, per_batch): | |
| decoded = [] | |
| for start_idx in range(0, samples["samples"].shape[0], per_batch): | |
| decoded.append(vae.decode(samples["samples"][start_idx:start_idx+per_batch])) | |
| return (torch.cat(decoded, dim=0), ) | |
| class VAEEncodeBatched: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "pixels": ("IMAGE", ), "vae": ("VAE", ), | |
| "per_batch": ("INT", {"default": 16, "min": 1}) | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/batched nodes" | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "encode" | |
| def encode(self, vae, pixels, per_batch): | |
| t = [] | |
| for start_idx in range(0, pixels.shape[0], per_batch): | |
| sub_pixels = VAEEncode.vae_encode_crop_pixels(pixels[start_idx:start_idx+per_batch]) | |
| t.append(vae.encode(sub_pixels[:,:,:,:3])) | |
| return ({"samples": torch.cat(t, dim=0)}, ) | |