Spaces:
Paused
Paused
| import torch | |
| import comfy.model_management | |
| def cast_bias_weight(s, input): | |
| bias = None | |
| non_blocking = comfy.model_management.device_supports_non_blocking(input.device) | |
| if s.bias is not None: | |
| bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) | |
| weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) | |
| return weight, bias | |
| class disable_weight_init: | |
| class Linear(torch.nn.Linear): | |
| comfy_cast_weights = False | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return torch.nn.functional.linear(input, weight, bias) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class Conv2d(torch.nn.Conv2d): | |
| comfy_cast_weights = False | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return self._conv_forward(input, weight, bias) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class Conv3d(torch.nn.Conv3d): | |
| comfy_cast_weights = False | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return self._conv_forward(input, weight, bias) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class GroupNorm(torch.nn.GroupNorm): | |
| comfy_cast_weights = False | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| class LayerNorm(torch.nn.LayerNorm): | |
| comfy_cast_weights = False | |
| def reset_parameters(self): | |
| return None | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| def conv_nd(s, dims, *args, **kwargs): | |
| if dims == 2: | |
| return s.Conv2d(*args, **kwargs) | |
| elif dims == 3: | |
| return s.Conv3d(*args, **kwargs) | |
| else: | |
| raise ValueError(f"unsupported dimensions: {dims}") | |
| class manual_cast(disable_weight_init): | |
| class Linear(disable_weight_init.Linear): | |
| comfy_cast_weights = True | |
| class Conv2d(disable_weight_init.Conv2d): | |
| comfy_cast_weights = True | |
| class Conv3d(disable_weight_init.Conv3d): | |
| comfy_cast_weights = True | |
| class GroupNorm(disable_weight_init.GroupNorm): | |
| comfy_cast_weights = True | |
| class LayerNorm(disable_weight_init.LayerNorm): | |
| comfy_cast_weights = True | |