Spaces:
Paused
Paused
| import torch | |
| import folder_paths | |
| import nodes as comfy_nodes | |
| from comfy.model_patcher import ModelPatcher | |
| from comfy.sd import load_checkpoint_guess_config | |
| from .logger import logger | |
| from .utils_model import BetaSchedules | |
| from .model_injection import get_vanilla_model_patcher | |
| class AnimateDiffUnload: | |
| def __init__(self) -> None: | |
| pass | |
| def INPUT_TYPES(s): | |
| return {"required": {"model": ("MODEL",)}} | |
| RETURN_TYPES = ("MODEL",) | |
| CATEGORY = "Animate Diff ππ π /extras" | |
| FUNCTION = "unload_motion_modules" | |
| def unload_motion_modules(self, model: ModelPatcher): | |
| # return model clone with ejected params | |
| #model = eject_params_from_model(model) | |
| model = get_vanilla_model_patcher(model) | |
| return (model.clone(),) | |
| class CheckpointLoaderSimpleWithNoiseSelect: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), | |
| "beta_schedule": (BetaSchedules.ALIAS_LIST, {"default": BetaSchedules.USE_EXISTING}, ) | |
| }, | |
| "optional": { | |
| "use_custom_scale_factor": ("BOOLEAN", {"default": False}), | |
| "scale_factor": ("FLOAT", {"default": 0.18215, "min": 0.0, "max": 1.0, "step": 0.00001}) | |
| } | |
| } | |
| RETURN_TYPES = ("MODEL", "CLIP", "VAE") | |
| FUNCTION = "load_checkpoint" | |
| CATEGORY = "Animate Diff ππ π /extras" | |
| def load_checkpoint(self, ckpt_name, beta_schedule, output_vae=True, output_clip=True, use_custom_scale_factor=False, scale_factor=0.18215): | |
| ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) | |
| out = load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) | |
| # register chosen beta schedule on model - convert to beta_schedule name recognized by ComfyUI | |
| new_model_sampling = BetaSchedules.to_model_sampling(beta_schedule, out[0]) | |
| if new_model_sampling is not None: | |
| out[0].model.model_sampling = new_model_sampling | |
| if use_custom_scale_factor: | |
| out[0].model.latent_format.scale_factor = scale_factor | |
| return out | |
| class EmptyLatentImageLarge: | |
| def __init__(self, device="cpu"): | |
| self.device = device | |
| def INPUT_TYPES(s): | |
| return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": comfy_nodes.MAX_RESOLUTION, "step": 8}), | |
| "height": ("INT", {"default": 512, "min": 64, "max": comfy_nodes.MAX_RESOLUTION, "step": 8}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 262144})}} | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "generate" | |
| CATEGORY = "Animate Diff ππ π /extras" | |
| def generate(self, width, height, batch_size=1): | |
| latent = torch.zeros([batch_size, 4, height // 8, width // 8]) | |
| return ({"samples":latent}, ) | |