Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import gradio as gr | |
| os.environ["TOKENIZERS_PARALLELISM"] = "true" | |
| emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
| emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
| emotion_labels = ["anger", "disgust", "fear", "joy", "neutral", "sadness", "surprise"] | |
| def analyze_emotion(text): | |
| try: | |
| inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
| outputs = emotion_model(**inputs) | |
| probs = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
| max_prob, max_index = torch.max(probs, dim=1) | |
| return emotion_labels[max_index.item()], f"{max_prob.item():.4f}" | |
| except Exception as e: | |
| print(f"Error in emotion analysis: {e}") | |
| return "Error", "N/A" | |
| def create_emotion_tab(): | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| input_text = gr.Textbox(value='I actually speak to the expets myself to give you the best value you can get', lines=5, placeholder="Enter text here...", label="Input Text") | |
| with gr.Row(): | |
| clear_btn = gr.Button("Clear", scale=1) | |
| submit_btn = gr.Button("Analyze", scale=1, elem_classes="submit") | |
| with gr.Column(scale=1): | |
| output_emotion = gr.Textbox(label="Detected Emotion") | |
| output_confidence = gr.Textbox(label="Emotion Confidence Score") | |
| submit_btn.click(analyze_emotion, inputs=[input_text], outputs=[output_emotion, output_confidence]) | |
| clear_btn.click(lambda: ("", "", ""), outputs=[input_text, output_emotion, output_confidence]) | |
| gr.Examples(["I am so happy today!", "I feel terrible and sad.", "This is a neutral statement."], inputs=[input_text]) |