File size: 8,573 Bytes
4089011
 
 
 
 
 
3e471a6
4089011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e471a6
4089011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c510a3
4089011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e471a6
4089011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0106cfb
 
4089011
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import os
import glob
from typing import Tuple
import gradio as gr
import torch
import spaces

from parlervoice_infer.engine import ParlerVoiceInference
from parlervoice_infer.config import GenerationConfig
from parlervoice_infer.presets import PRESETS
from parlervoice_infer.constants import (
    GENDER_MAP,
    PITCH_BINS as pitch_mean_bins,
    RATE_BINS as speaker_rate_bins,
    MONOTONY_BINS as speech_monotony_bins,
    NOISE_BINS as noise_bins,
    REVERB_BINS as reverberation_bins,
)
from parlervoice_infer.description import build_advanced_description


# --- Global inference engine ---
_INFER: ParlerVoiceInference = None
CHECKPOINT = "voicing-ai/ParlerVoice"
BASE_MODEL = "parler-tts/parler-tts-mini-v1.1"


# --- Load model (singleton) ---
def _ensure_infer(checkpoint: str, base_model: str) -> ParlerVoiceInference:
    global _INFER
    if _INFER is None:
        print("[INFO] Loading model...")
        _INFER = ParlerVoiceInference(checkpoint_path=checkpoint, base_model_path=base_model)
    return _INFER


# --- Cleanup old outputs ---
def cleanup_outputs(max_files=20):
    """Keep only the latest `max_files` WAVs in outputs/ directory."""
    os.makedirs("outputs", exist_ok=True)
    files = sorted(glob.glob("outputs/*.wav"), key=os.path.getmtime)
    if len(files) > max_files:
        old_files = files[:len(files) - max_files]
        for f in old_files:
            try:
                os.remove(f)
            except Exception:
                pass


# --- Audio generation ---
@spaces.GPU(duration=120)
def generate_audio(
    prompt: str,
    speaker: str,
    tone: str,
    emotion: str,
    pitch: str,
    pace: str,
    monotony: str,
    noise: str,
    reverberation: str,
) -> Tuple[str, str]:
    try:
        infer = _ensure_infer(CHECKPOINT, BASE_MODEL)
        description = build_advanced_description(
            speaker=speaker,
            pace=pace,
            noise=noise,
            reverberation=reverberation,
            monotony=monotony,
            pitch=pitch,
            emotion=emotion,
            tone=tone,
            add_context=True,
        )
        cfg = GenerationConfig()

        os.makedirs("outputs", exist_ok=True)
        out_path = os.path.join("outputs", f"parler_out_{os.getpid()}.wav")

        cleanup_outputs(max_files=20)

        print(f"[INFO] Generating audio to {out_path} ...")
        audio_array, saved = infer.generate_audio(
            prompt=prompt,
            description=description,
            config=cfg,
            output_path=out_path,
        )

        if not saved or not os.path.isfile(saved):
            import soundfile as sf
            if audio_array is None or len(audio_array) == 0:
                raise ValueError("generate_audio() did not return valid audio data.")
            sf.write(out_path, audio_array, getattr(infer, "sampling_rate", 22050))
            saved = out_path

        return saved, "Success"

    except Exception as e:
        import traceback
        print(traceback.format_exc())
        return "", f"Error: {e}"


# --- Gradio demo ---
def build_demo() -> gr.Blocks:
    SPEAKER_NAMES = sorted(GENDER_MAP.keys())
    preset_names = ["Custom"] + list(PRESETS.keys())

    with gr.Blocks() as demo:
        gr.Markdown("# ParlerVoice")

        prompt_input = gr.Textbox(label="Enter Text", placeholder="Type what the speaker says...")
        speaker_dropdown = gr.Dropdown(label="Select Speaker", choices=SPEAKER_NAMES, value=SPEAKER_NAMES[0])

        preset_dropdown = gr.Dropdown(
            label="Voice Preset",
            choices=preset_names,
            value="Custom",
            interactive=True,
        )

        with gr.Group():
            tone = gr.Dropdown(
                label="Tone",
                choices=[
                    "serious",
                    "dramatic",
                    "casual",
                    "professional",
                    "storytelling",
                    "narrative",
                    "emotional",
                    "energetic",
                    "loving"
                ],
                value="serious",
            )
            
            emotion = gr.Dropdown(
                label="Emotion",
                choices=[
                    "neutral",
                    "sad",
                    "happy",
                    "angry",
                    "excited",
                    "confused",
                    "loving",
                    "casual"
                ],
                value="neutral",
            )

            pitch = gr.Dropdown(label="Pitch", choices=pitch_mean_bins, value="moderate pitch")
            pace = gr.Dropdown(label="Pace", choices=speaker_rate_bins, value="moderate speed")
            monotony = gr.Dropdown(label="Speech Style", choices=speech_monotony_bins, value="expressive and animated")
            noise = gr.Dropdown(label="Noise", choices=noise_bins, value="very clear")
            reverberation = gr.Dropdown(label="Reverberation", choices=reverberation_bins, value="very close-sounding")

        gr.Markdown(
            """
**Sample Descriptions:**  
- Connor delivers a serious and professional message with a calm, even pace and a moderate pitch.  
- Madison delivers a sad and disappointed speech. Her voice is slightly high-pitched and sounds emotional.  
- Jackson delivers a narrative with a slightly dramatic tone and clean recording.
"""
        )

        def apply_preset(preset_name: str):
            if preset_name == "Custom" or preset_name not in PRESETS:
                return gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
            preset = PRESETS[preset_name]
            return (
                gr.update(value=preset.get("tone")),
                gr.update(value=preset.get("emotion")),
                gr.update(value=preset.get("pitch")),
                gr.update(value=preset.get("pace")),
                gr.update(value=preset.get("monotony")),
            )

        preset_dropdown.change(
            fn=apply_preset,
            inputs=preset_dropdown,
            outputs=[tone, emotion, pitch, pace, monotony],
        )

        generate_btn = gr.Button("Generate Audio")
        audio_output = gr.Audio(type="filepath", label="Generated Audio")
        status_output = gr.Textbox(label="Status", interactive=False)

        generate_btn.click(
            fn=generate_audio,
            inputs=[
                prompt_input,
                speaker_dropdown,
                tone,
                emotion,
                pitch,
                pace,
                monotony,
                noise,
                reverberation,
            ],
            outputs=[audio_output, status_output],
        )

    return demo


# --- Warmup logic ---
@spaces.GPU(duration=180)
def warmup_model():
    """Run a few dummy sentences to preload model & CUDA."""
    infer = _ensure_infer(CHECKPOINT, BASE_MODEL)
    cfg = GenerationConfig(max_length=256)
    warmup_sentences = [
        "Hello there, this is a warmup test.",
        "The model is preparing to generate speech.",
        "Please wait a moment while we load everything.",
        "This is sentence number four for warmup.",
        "Warmup complete, ready to synthesize voice!",
    ]
    speaker = list(GENDER_MAP.keys())[0]
    for text in warmup_sentences:
        try:
            desc = build_advanced_description(
                speaker=speaker,
                pace="moderate speed",
                noise="very clear",
                reverberation="very close-sounding",
                monotony="expressive and animated",
                pitch="moderate pitch",
                emotion="neutral",
                tone="serious",
                add_context=False,
            )
            infer.generate_audio(text, desc, cfg)
        except Exception as e:
            print(f"[WARN] Warmup failed for '{text}': {e}")
    print("[INFO] Warmup completed ✅")


def _parse_args() -> argparse.Namespace:
    p = argparse.ArgumentParser(description="ParlerVoice Gradio App")
    p.add_argument("--server-name", default="0.0.0.0")
    p.add_argument("--server-port", type=int, default=8000)
    p.add_argument("--share", action="store_true")
    return p.parse_args()


def main() -> int:
    warmup_model()
    args = _parse_args()
    demo = build_demo()
    # demo.launch(server_name=args.server_name, server_port=args.server_port, share=args.share)
    demo.launch()
    return 0


if __name__ == "__main__":
    raise SystemExit(main())