Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -68,7 +68,21 @@ def process_text_in_chunks(text, process_function, max_chunk_size=256):
|
|
| 68 |
|
| 69 |
return processed_text.strip()
|
| 70 |
@spaces.GPU(duration=120)
|
| 71 |
-
def greet(img, apply_grammar_correction, apply_spell_check):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
img.save("out.jpg")
|
| 73 |
doc = DocumentFile.from_images("out.jpg")
|
| 74 |
output = OCRpredictor(doc)
|
|
@@ -81,11 +95,6 @@ def greet(img, apply_grammar_correction, apply_spell_check):
|
|
| 81 |
res += " " + obj3.value
|
| 82 |
res += "\n"
|
| 83 |
res += "\n"
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
# img = cv2.imread(inputPath)
|
| 87 |
-
# res = pt.image_to_string(img,lang='eng')
|
| 88 |
-
# print(text)
|
| 89 |
|
| 90 |
# Process in chunks for grammar correction
|
| 91 |
if apply_grammar_correction:
|
|
@@ -104,9 +113,9 @@ demo_ocr = gr.Interface(
|
|
| 104 |
fn=greet,
|
| 105 |
inputs=[
|
| 106 |
gr.Image(type="pil"),
|
| 107 |
-
gr.Dropdown(["English","Hindi","Punjabi"],label="Select Language"),
|
| 108 |
gr.Checkbox(label="Apply Grammar Correction"),
|
| 109 |
-
gr.Checkbox(label="Apply Spell Check")
|
|
|
|
| 110 |
],
|
| 111 |
outputs=["text", "file"],
|
| 112 |
title="DocTR OCR with Grammar and Spell Check",
|
|
|
|
| 68 |
|
| 69 |
return processed_text.strip()
|
| 70 |
@spaces.GPU(duration=120)
|
| 71 |
+
def greet(img, apply_grammar_correction, apply_spell_check,lang_of_input):
|
| 72 |
+
|
| 73 |
+
if (lang_of_input=="Hindi"):
|
| 74 |
+
res = pt.image_to_string(img,lang='hin')
|
| 75 |
+
_output_name = "RESULT_OCR.txt"
|
| 76 |
+
open(_output_name, 'w').write(res)
|
| 77 |
+
return res, _output_name
|
| 78 |
+
|
| 79 |
+
if (lang_of_input=="Punjabi"):
|
| 80 |
+
res = pt.image_to_string(img,lang='pan')
|
| 81 |
+
_output_name = "RESULT_OCR.txt"
|
| 82 |
+
open(_output_name, 'w').write(res)
|
| 83 |
+
return res, _output_name
|
| 84 |
+
|
| 85 |
+
|
| 86 |
img.save("out.jpg")
|
| 87 |
doc = DocumentFile.from_images("out.jpg")
|
| 88 |
output = OCRpredictor(doc)
|
|
|
|
| 95 |
res += " " + obj3.value
|
| 96 |
res += "\n"
|
| 97 |
res += "\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
# Process in chunks for grammar correction
|
| 100 |
if apply_grammar_correction:
|
|
|
|
| 113 |
fn=greet,
|
| 114 |
inputs=[
|
| 115 |
gr.Image(type="pil"),
|
|
|
|
| 116 |
gr.Checkbox(label="Apply Grammar Correction"),
|
| 117 |
+
gr.Checkbox(label="Apply Spell Check"),
|
| 118 |
+
gr.Dropdown(["English","Hindi","Punjabi"],label="Select Language")
|
| 119 |
],
|
| 120 |
outputs=["text", "file"],
|
| 121 |
title="DocTR OCR with Grammar and Spell Check",
|