Spaces:
Runtime error
Runtime error
| import torch | |
| from torch.utils import data | |
| import numpy as np | |
| from os.path import join as pjoin | |
| import random | |
| import codecs as cs | |
| from tqdm import tqdm | |
| import utils.paramUtil as paramUtil | |
| from torch.utils.data._utils.collate import default_collate | |
| def collate_fn(batch): | |
| batch.sort(key=lambda x: x[3], reverse=True) | |
| return default_collate(batch) | |
| '''For use of training text-2-motion generative model''' | |
| class Text2MotionDataset(data.Dataset): | |
| def __init__(self, dataset_name, is_test, w_vectorizer, feat_bias = 5, max_text_len = 20, unit_length = 4): | |
| self.max_length = 20 | |
| self.pointer = 0 | |
| self.dataset_name = dataset_name | |
| self.is_test = is_test | |
| self.max_text_len = max_text_len | |
| self.unit_length = unit_length | |
| self.w_vectorizer = w_vectorizer | |
| if dataset_name == 't2m': | |
| self.data_root = './dataset/HumanML3D' | |
| self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') | |
| self.text_dir = pjoin(self.data_root, 'texts') | |
| self.joints_num = 22 | |
| radius = 4 | |
| fps = 20 | |
| self.max_motion_length = 196 | |
| dim_pose = 263 | |
| kinematic_chain = paramUtil.t2m_kinematic_chain | |
| self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' | |
| elif dataset_name == 'kit': | |
| self.data_root = './dataset/KIT-ML' | |
| self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') | |
| self.text_dir = pjoin(self.data_root, 'texts') | |
| self.joints_num = 21 | |
| radius = 240 * 8 | |
| fps = 12.5 | |
| dim_pose = 251 | |
| self.max_motion_length = 196 | |
| kinematic_chain = paramUtil.kit_kinematic_chain | |
| self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' | |
| mean = np.load(pjoin(self.meta_dir, 'mean.npy')) | |
| std = np.load(pjoin(self.meta_dir, 'std.npy')) | |
| if is_test: | |
| split_file = pjoin(self.data_root, 'test.txt') | |
| else: | |
| split_file = pjoin(self.data_root, 'val.txt') | |
| min_motion_len = 40 if self.dataset_name =='t2m' else 24 | |
| # min_motion_len = 64 | |
| joints_num = self.joints_num | |
| data_dict = {} | |
| id_list = [] | |
| with cs.open(split_file, 'r') as f: | |
| for line in f.readlines(): | |
| id_list.append(line.strip()) | |
| new_name_list = [] | |
| length_list = [] | |
| for name in tqdm(id_list): | |
| try: | |
| motion = np.load(pjoin(self.motion_dir, name + '.npy')) | |
| if (len(motion)) < min_motion_len or (len(motion) >= 200): | |
| continue | |
| text_data = [] | |
| flag = False | |
| with cs.open(pjoin(self.text_dir, name + '.txt')) as f: | |
| for line in f.readlines(): | |
| text_dict = {} | |
| line_split = line.strip().split('#') | |
| caption = line_split[0] | |
| tokens = line_split[1].split(' ') | |
| f_tag = float(line_split[2]) | |
| to_tag = float(line_split[3]) | |
| f_tag = 0.0 if np.isnan(f_tag) else f_tag | |
| to_tag = 0.0 if np.isnan(to_tag) else to_tag | |
| text_dict['caption'] = caption | |
| text_dict['tokens'] = tokens | |
| if f_tag == 0.0 and to_tag == 0.0: | |
| flag = True | |
| text_data.append(text_dict) | |
| else: | |
| try: | |
| n_motion = motion[int(f_tag*fps) : int(to_tag*fps)] | |
| if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200): | |
| continue | |
| new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name | |
| while new_name in data_dict: | |
| new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name | |
| data_dict[new_name] = {'motion': n_motion, | |
| 'length': len(n_motion), | |
| 'text':[text_dict]} | |
| new_name_list.append(new_name) | |
| length_list.append(len(n_motion)) | |
| except: | |
| print(line_split) | |
| print(line_split[2], line_split[3], f_tag, to_tag, name) | |
| # break | |
| if flag: | |
| data_dict[name] = {'motion': motion, | |
| 'length': len(motion), | |
| 'text': text_data} | |
| new_name_list.append(name) | |
| length_list.append(len(motion)) | |
| except Exception as e: | |
| # print(e) | |
| pass | |
| name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1])) | |
| self.mean = mean | |
| self.std = std | |
| self.length_arr = np.array(length_list) | |
| self.data_dict = data_dict | |
| self.name_list = name_list | |
| self.reset_max_len(self.max_length) | |
| def reset_max_len(self, length): | |
| assert length <= self.max_motion_length | |
| self.pointer = np.searchsorted(self.length_arr, length) | |
| print("Pointer Pointing at %d"%self.pointer) | |
| self.max_length = length | |
| def inv_transform(self, data): | |
| return data * self.std + self.mean | |
| def forward_transform(self, data): | |
| return (data - self.mean) / self.std | |
| def __len__(self): | |
| return len(self.data_dict) - self.pointer | |
| def __getitem__(self, item): | |
| idx = self.pointer + item | |
| name = self.name_list[idx] | |
| data = self.data_dict[name] | |
| # data = self.data_dict[self.name_list[idx]] | |
| motion, m_length, text_list = data['motion'], data['length'], data['text'] | |
| # Randomly select a caption | |
| text_data = random.choice(text_list) | |
| caption, tokens = text_data['caption'], text_data['tokens'] | |
| if len(tokens) < self.max_text_len: | |
| # pad with "unk" | |
| tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] | |
| sent_len = len(tokens) | |
| tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - sent_len) | |
| else: | |
| # crop | |
| tokens = tokens[:self.max_text_len] | |
| tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] | |
| sent_len = len(tokens) | |
| pos_one_hots = [] | |
| word_embeddings = [] | |
| for token in tokens: | |
| word_emb, pos_oh = self.w_vectorizer[token] | |
| pos_one_hots.append(pos_oh[None, :]) | |
| word_embeddings.append(word_emb[None, :]) | |
| pos_one_hots = np.concatenate(pos_one_hots, axis=0) | |
| word_embeddings = np.concatenate(word_embeddings, axis=0) | |
| if self.unit_length < 10: | |
| coin2 = np.random.choice(['single', 'single', 'double']) | |
| else: | |
| coin2 = 'single' | |
| if coin2 == 'double': | |
| m_length = (m_length // self.unit_length - 1) * self.unit_length | |
| elif coin2 == 'single': | |
| m_length = (m_length // self.unit_length) * self.unit_length | |
| idx = random.randint(0, len(motion) - m_length) | |
| motion = motion[idx:idx+m_length] | |
| "Z Normalization" | |
| motion = (motion - self.mean) / self.std | |
| if m_length < self.max_motion_length: | |
| motion = np.concatenate([motion, | |
| np.zeros((self.max_motion_length - m_length, motion.shape[1])) | |
| ], axis=0) | |
| return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens), name | |
| def DATALoader(dataset_name, is_test, | |
| batch_size, w_vectorizer, | |
| num_workers = 8, unit_length = 4) : | |
| val_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, is_test, w_vectorizer, unit_length=unit_length), | |
| batch_size, | |
| shuffle = True, | |
| num_workers=num_workers, | |
| collate_fn=collate_fn, | |
| drop_last = True) | |
| return val_loader | |
| def cycle(iterable): | |
| while True: | |
| for x in iterable: | |
| yield x | |