Spaces:
Build error
Build error
| import spaces | |
| import gradio as gr | |
| # import gradio.helpers | |
| import torch | |
| import os | |
| from glob import glob | |
| from pathlib import Path | |
| from typing import Optional | |
| from PIL import Image | |
| from diffusers.utils import load_image, export_to_video | |
| from pipeline import StableVideoDiffusionPipeline | |
| import random | |
| from safetensors import safe_open | |
| from lcm_scheduler import AnimateLCMSVDStochasticIterativeScheduler | |
| def get_safetensors_files(): | |
| models_dir = "./safetensors" | |
| safetensors_files = [ | |
| f for f in os.listdir(models_dir) if f.endswith(".safetensors") | |
| ] | |
| return safetensors_files | |
| def model_select(selected_file): | |
| print("load model weights", selected_file) | |
| pipe.unet.cpu() | |
| file_path = os.path.join("./safetensors", selected_file) | |
| state_dict = {} | |
| with safe_open(file_path, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| state_dict[key] = f.get_tensor(key) | |
| missing, unexpected = pipe.unet.load_state_dict(state_dict, strict=True) | |
| pipe.unet.cuda() | |
| del state_dict | |
| return | |
| noise_scheduler = AnimateLCMSVDStochasticIterativeScheduler( | |
| num_train_timesteps=40, | |
| sigma_min=0.002, | |
| sigma_max=700.0, | |
| sigma_data=1.0, | |
| s_noise=1.0, | |
| rho=7, | |
| clip_denoised=False, | |
| ) | |
| pipe = StableVideoDiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-video-diffusion-img2vid-xt", | |
| scheduler=noise_scheduler, | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| ) | |
| pipe.to("cuda") | |
| pipe.enable_model_cpu_offload() # for smaller cost | |
| model_select("AnimateLCM-SVD-xt-1.1.safetensors") | |
| # pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # for faster inference | |
| max_64_bit_int = 2**63 - 1 | |
| def sample( | |
| image: Image, | |
| seed: Optional[int] = 42, | |
| randomize_seed: bool = False, | |
| motion_bucket_id: int = 80, | |
| fps_id: int = 8, | |
| max_guidance_scale: float = 1.2, | |
| min_guidance_scale: float = 1, | |
| width: int = 1024, | |
| height: int = 576, | |
| num_inference_steps: int = 4, | |
| decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. | |
| output_folder: str = "outputs_gradio", | |
| ): | |
| if image.mode == "RGBA": | |
| image = image.convert("RGB") | |
| if randomize_seed: | |
| seed = random.randint(0, max_64_bit_int) | |
| generator = torch.manual_seed(seed) | |
| os.makedirs(output_folder, exist_ok=True) | |
| base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
| video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
| with torch.autocast("cuda"): | |
| frames = pipe( | |
| image, | |
| decode_chunk_size=decoding_t, | |
| generator=generator, | |
| motion_bucket_id=motion_bucket_id, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| min_guidance_scale=min_guidance_scale, | |
| max_guidance_scale=max_guidance_scale, | |
| ).frames[0] | |
| export_to_video(frames, video_path, fps=fps_id) | |
| torch.manual_seed(seed) | |
| return video_path, seed | |
| def resize_image(image, output_size=(1024, 576)): | |
| # Calculate aspect ratios | |
| target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size | |
| image_aspect = image.width / image.height # Aspect ratio of the original image | |
| # Resize then crop if the original image is larger | |
| if image_aspect > target_aspect: | |
| # Resize the image to match the target height, maintaining aspect ratio | |
| new_height = output_size[1] | |
| new_width = int(new_height * image_aspect) | |
| resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate coordinates for cropping | |
| left = (new_width - output_size[0]) / 2 | |
| top = 0 | |
| right = (new_width + output_size[0]) / 2 | |
| bottom = output_size[1] | |
| else: | |
| # Resize the image to match the target width, maintaining aspect ratio | |
| new_width = output_size[0] | |
| new_height = int(new_width / image_aspect) | |
| resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate coordinates for cropping | |
| left = 0 | |
| top = (new_height - output_size[1]) / 2 | |
| right = output_size[0] | |
| bottom = (new_height + output_size[1]) / 2 | |
| # Crop the image | |
| cropped_image = resized_image.crop((left, top, right, bottom)) | |
| return cropped_image | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # [AnimateLCM: Accelerating the Animation of Personalized Diffusion Models and Adapters with Decoupled Consistency Learning](https://arxiv.org/abs/2402.00769) | |
| Fu-Yun Wang, Zhaoyang Huang (*Corresponding Author), Xiaoyu Shi, Weikang Bian, Guanglu Song, Yu Liu, Hongsheng Li (*Corresponding Author)<br> | |
| [arXiv Report](https://arxiv.org/abs/2402.00769) | [Project Page](https://animatelcm.github.io/) | [Github](https://github.com/G-U-N/AnimateLCM) | [Civitai](https://civitai.com/models/290375/animatelcm-fast-video-generation) | [Replicate](https://replicate.com/camenduru/animate-lcm) | |
| Related Models: | |
| [AnimateLCM-t2v](https://huggingface.co/wangfuyun/AnimateLCM): Personalized Text-to-Video Generation | |
| [AnimateLCM-SVD-xt](https://huggingface.co/wangfuyun/AnimateLCM-SVD-xt): General Image-to-Video Generation | |
| [AnimateLCM-i2v](https://huggingface.co/wangfuyun/AnimateLCM-I2V): Personalized Image-to-Video Generation | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="Upload your image", type="pil") | |
| generate_btn = gr.Button("Generate") | |
| video = gr.Video() | |
| with gr.Accordion("Advanced options", open=False): | |
| safetensors_dropdown = gr.Dropdown( | |
| label="Choose Safetensors", choices=get_safetensors_files() | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| value=42, | |
| randomize=False, | |
| minimum=0, | |
| maximum=max_64_bit_int, | |
| step=1, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
| motion_bucket_id = gr.Slider( | |
| label="Motion bucket id", | |
| info="Controls how much motion to add/remove from the image", | |
| value=80, | |
| minimum=1, | |
| maximum=255, | |
| ) | |
| fps_id = gr.Slider( | |
| label="Frames per second", | |
| info="The length of your video in seconds will be 25/fps", | |
| value=8, | |
| minimum=5, | |
| maximum=30, | |
| ) | |
| width = gr.Slider( | |
| label="Width of input image", | |
| info="It should be divisible by 64", | |
| value=1024, | |
| minimum=576, | |
| maximum=2048, | |
| ) | |
| height = gr.Slider( | |
| label="Height of input image", | |
| info="It should be divisible by 64", | |
| value=576, | |
| minimum=320, | |
| maximum=1152, | |
| ) | |
| max_guidance_scale = gr.Slider( | |
| label="Max guidance scale", | |
| info="classifier-free guidance strength", | |
| value=1.2, | |
| minimum=1, | |
| maximum=2, | |
| ) | |
| min_guidance_scale = gr.Slider( | |
| label="Min guidance scale", | |
| info="classifier-free guidance strength", | |
| value=1, | |
| minimum=1, | |
| maximum=1.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Num inference steps", | |
| info="steps for inference", | |
| value=4, | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| ) | |
| image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) | |
| generate_btn.click( | |
| fn=sample, | |
| inputs=[ | |
| image, | |
| seed, | |
| randomize_seed, | |
| motion_bucket_id, | |
| fps_id, | |
| max_guidance_scale, | |
| min_guidance_scale, | |
| width, | |
| height, | |
| num_inference_steps, | |
| ], | |
| outputs=[video, seed], | |
| api_name="video", | |
| ) | |
| safetensors_dropdown.change(fn=model_select, inputs=safetensors_dropdown) | |
| gr.Examples( | |
| examples=[ | |
| ["test_imgs/ai-generated-8496135_1280.jpg"], | |
| ["test_imgs/dog-7396912_1280.jpg"], | |
| ["test_imgs/ship-7833921_1280.jpg"], | |
| ["test_imgs/girl-4898696_1280.jpg"], | |
| ["test_imgs/power-station-6579092_1280.jpg"] | |
| ], | |
| inputs=[image], | |
| outputs=[video, seed], | |
| fn=sample, | |
| cache_examples=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20, api_open=False) | |
| demo.launch(share=True, show_api=False) | |