Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -220,9 +220,6 @@ inputs = tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_l
|
|
| 220 |
with torch.no_grad():
|
| 221 |
logits = loaded_model(**inputs).logits
|
| 222 |
|
| 223 |
-
# train
|
| 224 |
-
saved_path = train_function_no_sweeps(base_model_path,train_dataset, test_dataset)
|
| 225 |
-
|
| 226 |
# Get predictions
|
| 227 |
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
|
| 228 |
predictions = torch.argmax(logits, dim=2)
|
|
@@ -237,7 +234,10 @@ id2label = {
|
|
| 237 |
for token, prediction in zip(tokens, predictions[0].numpy()):
|
| 238 |
if token not in ['<pad>', '<cls>', '<eos>']:
|
| 239 |
print((token, id2label[prediction]))
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
| 241 |
# debug result
|
| 242 |
dubug_result = saved_path #predictions #class_weights
|
| 243 |
|
|
|
|
| 220 |
with torch.no_grad():
|
| 221 |
logits = loaded_model(**inputs).logits
|
| 222 |
|
|
|
|
|
|
|
|
|
|
| 223 |
# Get predictions
|
| 224 |
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
|
| 225 |
predictions = torch.argmax(logits, dim=2)
|
|
|
|
| 234 |
for token, prediction in zip(tokens, predictions[0].numpy()):
|
| 235 |
if token not in ['<pad>', '<cls>', '<eos>']:
|
| 236 |
print((token, id2label[prediction]))
|
| 237 |
+
|
| 238 |
+
# train
|
| 239 |
+
saved_path = train_function_no_sweeps(base_model_path,train_dataset, test_dataset)
|
| 240 |
+
|
| 241 |
# debug result
|
| 242 |
dubug_result = saved_path #predictions #class_weights
|
| 243 |
|