Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import BertTokenizer, BertForSequenceClassification | |
| import torch | |
| # 載入 tokenizer 和模型 | |
| tokenizer = BertTokenizer.from_pretrained("ckiplab/bert-base-chinese") | |
| model = BertForSequenceClassification.from_pretrained("ckiplab/bert-base-chinese", num_labels=2) | |
| model.eval() | |
| # 預測函式 | |
| def predict(text): | |
| inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| prediction = torch.argmax(logits, dim=1).item() | |
| return "詐騙訊息" if prediction == 1 else "正常訊息" | |
| # Gradio UI | |
| iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="Line詐騙訊息辨識器") | |
| iface.launch() | |