File size: 5,275 Bytes
43c1b9a
 
 
 
 
 
 
 
 
 
 
407171e
 
 
 
43c1b9a
 
407171e
 
 
 
 
43c1b9a
 
 
407171e
 
43c1b9a
 
 
 
 
 
 
 
 
407171e
43c1b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407171e
 
43c1b9a
 
 
 
 
 
407171e
43c1b9a
 
 
 
 
 
 
 
407171e
 
43c1b9a
407171e
 
 
43c1b9a
 
407171e
43c1b9a
 
407171e
 
43c1b9a
 
 
407171e
43c1b9a
 
 
 
 
 
 
 
 
 
 
 
 
407171e
 
 
 
 
 
43c1b9a
407171e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from logging import error
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, VitsModel
import os
import numpy as np
import noisereduce as nr
import torch.nn as nn
from typing import Optional, Iterator

# قراءة التوكن من Secrets
token = os.getenv("acees-token")  # تأكد أنك سميته بنفس الاسم في Settings → Repository secrets

# كائن لتخزين النماذج
models = {}

# اختيار الجهاز (CUDA لو متوفر، غير كذا CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"


# دالة إزالة الضوضاء
def remove_noise_nr(audio_data, sr=16000):
    return nr.reduce_noise(y=audio_data, hop_length=256, sr=sr)


# دالة inference (streaming / non-streaming)
def _inference_forward_stream(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        speaker_embeddings: Optional[torch.Tensor] = None,
        chunk_size: int = 32,
        is_streaming: bool = True
    ) -> Iterator[torch.Tensor]:

    padding_mask = attention_mask.unsqueeze(-1).float() if attention_mask is not None else torch.ones_like(input_ids).unsqueeze(-1).float()
    text_encoder_output = self.text_encoder(input_ids=input_ids, padding_mask=padding_mask, attention_mask=attention_mask)
    hidden_states = text_encoder_output[0].transpose(1, 2)
    input_padding_mask = padding_mask.transpose(1, 2)

    log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
    length_scale = 1.0 / self.speaking_rate
    duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
    predicted_lengths = torch.clamp_min(torch.sum(duration, [1,2]), 1).long()

    indices = torch.arange(predicted_lengths.max(), device=predicted_lengths.device)
    output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
    output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)

    attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
    batch_size, _, output_length, input_length = attn_mask.shape
    cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
    indices = torch.arange(output_length, device=duration.device)
    valid_indices = indices.unsqueeze(0) < cum_duration
    valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
    padded_indices = valid_indices - nn.functional.pad(valid_indices, [0,0,1,0,0,0])[:, :-1]
    attn = padded_indices.unsqueeze(1).transpose(2,3) * attn_mask

    prior_means = text_encoder_output[1]
    prior_log_variances = text_encoder_output[2]
    prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
    latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
    spectrogram = latents * output_padding_mask

    if is_streaming:
        for i in range(0, spectrogram.size(-1), chunk_size):
            with torch.no_grad():
                wav = self.decoder(spectrogram[:,:,i:i+chunk_size], speaker_embeddings)
            yield wav.squeeze().cpu().numpy()
    else:
        with torch.no_grad():
            wav = self.decoder(spectrogram, speaker_embeddings)
        yield wav.squeeze().cpu().numpy()


# تحميل النموذج + التوكن
def get_model(name_model):
    global models
    if name_model in models:
        tokenizer = AutoTokenizer.from_pretrained(name_model, token=token)
        return models[name_model], tokenizer

    models[name_model] = VitsModel.from_pretrained(name_model, token=token)
    models[name_model].decoder.apply_weight_norm()
    for flow in models[name_model].flow.flows:
        torch.nn.utils.weight_norm(flow.conv_pre)
        torch.nn.utils.weight_norm(flow.conv_post)

    tokenizer = AutoTokenizer.from_pretrained(name_model, token=token)
    return models[name_model], tokenizer


# النص الافتراضي
TXT = "السلام عليكم ورحمة الله وبركاته يا هلا وسهلا ومراحب بالغالي"


# دالة تحويل النص إلى كلام
def modelspeech(text=TXT, name_model="wasmdashai/vits-ar-sa-huba-v2", speaking_rate=16000):
    model, tokenizer = get_model(name_model)
    inputs = tokenizer(text, return_tensors="pt").to(device)  # يشتغل على CPU أو GPU حسب المتوفر
    model.speaking_rate = speaking_rate
    with torch.no_grad():
        outputs = model(**inputs)
        waveform = outputs.waveform[0].cpu().numpy()
    return model.config.sampling_rate, remove_noise_nr(waveform)


# واجهة Gradio
model_choices = gr.Dropdown(
    choices=[
        "wasmdashai/vits-ar-sa-huba-v1",
        "wasmdashai/vits-ar-sa-huba-v2",
        "wasmdashai/vits-ar-sa-A",
        "wasmdashai/vits-ar-ye-sa",
        "wasmdashai/vits-ar-sa-M-v1",
        "wasmdashai/vits-en-v1"
    ],
    label="اختر النموذج",
    value="wasmdashai/vits-ar-sa-huba-v2"
)

demo = gr.Interface(
    fn=modelspeech,
    inputs=["text", model_choices, gr.Slider(0.1, 1, step=0.1, value=0.8)],
    outputs=["audio"]
)

demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860)