Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -565,29 +565,8 @@ dir_model='wasmdashai/vits-ar-huba-fine'
|
|
| 565 |
|
| 566 |
global_step=0
|
| 567 |
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
| 568 |
-
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, VITSTrainingArguments))
|
| 569 |
-
json_file = os.path.abspath('VitsModelSplit/finetune_config_ara.json')
|
| 570 |
-
model_args, data_args, training_args = parser.parse_json_file(json_file = json_file)
|
| 571 |
-
print('start')
|
| 572 |
-
sgl=get_state_grad_loss(mel=True,
|
| 573 |
-
# generator=False,
|
| 574 |
-
# discriminator=False,
|
| 575 |
-
duration=False)
|
| 576 |
-
|
| 577 |
-
print(training_args)
|
| 578 |
-
training_args.num_train_epochs=1000
|
| 579 |
-
training_args.fp16=True
|
| 580 |
-
training_args.eval_steps=300
|
| 581 |
-
training_args.weight_kl=1
|
| 582 |
-
training_args.d_learning_rate=2e-4
|
| 583 |
-
training_args.learning_rate=2e-4
|
| 584 |
-
training_args.weight_mel=45
|
| 585 |
-
training_args.num_train_epochs=4
|
| 586 |
-
training_args.eval_steps=1000
|
| 587 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 588 |
-
print(device)
|
| 589 |
|
| 590 |
-
|
| 591 |
ctrain_datasets,eval_dataset,full_generation_dataset=get_data_loader(train_dataset_dirs = train_dataset_dirs,
|
| 592 |
eval_dataset_dir = os.path.join(dataset_dir,'eval'),
|
| 593 |
full_generation_dir = os.path.join(dataset_dir,'full_generation'),
|
|
@@ -602,13 +581,36 @@ print('loadeed')
|
|
| 602 |
@spaces.GPU
|
| 603 |
def greet(text,id):
|
| 604 |
global GK
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 605 |
|
| 606 |
for i in range(10000):
|
| 607 |
# model.train(True)
|
| 608 |
print(f'clcye epochs ={i}')
|
| 609 |
yield f'clcye epochs ={i}'
|
| 610 |
|
| 611 |
-
|
|
|
|
| 612 |
#dir_model_save=dir_model+'/vend'
|
| 613 |
|
| 614 |
|
|
|
|
| 565 |
|
| 566 |
global_step=0
|
| 567 |
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
|
| 569 |
+
|
| 570 |
ctrain_datasets,eval_dataset,full_generation_dataset=get_data_loader(train_dataset_dirs = train_dataset_dirs,
|
| 571 |
eval_dataset_dir = os.path.join(dataset_dir,'eval'),
|
| 572 |
full_generation_dir = os.path.join(dataset_dir,'full_generation'),
|
|
|
|
| 581 |
@spaces.GPU
|
| 582 |
def greet(text,id):
|
| 583 |
global GK
|
| 584 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, VITSTrainingArguments))
|
| 585 |
+
json_file = os.path.abspath('VitsModelSplit/finetune_config_ara.json')
|
| 586 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file = json_file)
|
| 587 |
+
print('start')
|
| 588 |
+
sgl=get_state_grad_loss(mel=True,
|
| 589 |
+
# generator=False,
|
| 590 |
+
# discriminator=False,
|
| 591 |
+
duration=False)
|
| 592 |
+
|
| 593 |
+
print(training_args)
|
| 594 |
+
training_args.num_train_epochs=1000
|
| 595 |
+
training_args.fp16=True
|
| 596 |
+
training_args.eval_steps=300
|
| 597 |
+
training_args.weight_kl=1
|
| 598 |
+
training_args.d_learning_rate=2e-4
|
| 599 |
+
training_args.learning_rate=2e-4
|
| 600 |
+
training_args.weight_mel=45
|
| 601 |
+
training_args.num_train_epochs=4
|
| 602 |
+
training_args.eval_steps=1000
|
| 603 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 604 |
+
print(device)
|
| 605 |
+
|
| 606 |
|
| 607 |
for i in range(10000):
|
| 608 |
# model.train(True)
|
| 609 |
print(f'clcye epochs ={i}')
|
| 610 |
yield f'clcye epochs ={i}'
|
| 611 |
|
| 612 |
+
model=VitsModel.from_pretrained(dir_model,token=token).to("cuda")
|
| 613 |
+
|
| 614 |
#dir_model_save=dir_model+'/vend'
|
| 615 |
|
| 616 |
|