Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -93,20 +93,35 @@ def _inference_forward_stream(
|
|
| 93 |
yield spectrogram
|
| 94 |
|
| 95 |
|
| 96 |
-
def
|
| 97 |
global models
|
| 98 |
-
if name_model in
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
models[name_model].decoder.apply_weight_norm()
|
|
|
|
|
|
|
| 104 |
for flow in models[name_model].flow.flows:
|
| 105 |
torch.nn.utils.weight_norm(flow.conv_pre)
|
| 106 |
torch.nn.utils.weight_norm(flow.conv_post)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
|
| 109 |
-
return models[name_model], tokenizer
|
| 110 |
|
| 111 |
TXT = """السلام عليكم ورحمة الله وبركاته يا هلا وسهلا ومراحب بالغالي اخباركم طيبين ان شاء الله ارحبوا على العين والراس"""
|
| 112 |
def process_chunk(chunk_id, spectrogram_chunk, speaker_embeddings, decoder):
|
|
|
|
| 93 |
yield spectrogram
|
| 94 |
|
| 95 |
|
| 96 |
+
def get_model(name_model):
|
| 97 |
global models
|
| 98 |
+
if name_model in models:
|
| 99 |
+
if name_model=='wasmdashai/vits-en-v1':
|
| 100 |
+
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-en-v1",token=token)
|
| 101 |
+
else:
|
| 102 |
+
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vtk",token=token)
|
| 103 |
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
return models[name_model],tokenizer
|
| 108 |
+
models[name_model]=VitsModel.from_pretrained(name_model,token=token)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
models[name_model].decoder.apply_weight_norm()
|
| 113 |
+
# torch.nn.utils.weight_norm(self.decoder.conv_pre)
|
| 114 |
+
# torch.nn.utils.weight_norm(self.decoder.conv_post)
|
| 115 |
for flow in models[name_model].flow.flows:
|
| 116 |
torch.nn.utils.weight_norm(flow.conv_pre)
|
| 117 |
torch.nn.utils.weight_norm(flow.conv_post)
|
| 118 |
+
|
| 119 |
+
if name_model=='wasmdashai/vits-en-v1':
|
| 120 |
+
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-en-v1",token=token)
|
| 121 |
+
else:
|
| 122 |
+
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vtk",token=token)
|
| 123 |
|
| 124 |
+
return models[name_model],tokenizer
|
|
|
|
| 125 |
|
| 126 |
TXT = """السلام عليكم ورحمة الله وبركاته يا هلا وسهلا ومراحب بالغالي اخباركم طيبين ان شاء الله ارحبوا على العين والراس"""
|
| 127 |
def process_chunk(chunk_id, spectrogram_chunk, speaker_embeddings, decoder):
|