Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -407,7 +407,47 @@ class TrinerModelVITS:
|
|
| 407 |
self.len_dataset=len(self.DataSets['train'])
|
| 408 |
self.load_model()
|
| 409 |
self.init_wandb()
|
|
|
|
|
|
|
| 410 |
scaler = GradScaler(enabled=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
|
| 413 |
|
|
|
|
| 407 |
self.len_dataset=len(self.DataSets['train'])
|
| 408 |
self.load_model()
|
| 409 |
self.init_wandb()
|
| 410 |
+
self.training_args=load_training_args(self.path_training_args)
|
| 411 |
+
training_args= self.training_args
|
| 412 |
scaler = GradScaler(enabled=True)
|
| 413 |
+
for disc in self.model.discriminator.discriminators:
|
| 414 |
+
disc.apply_weight_norm()
|
| 415 |
+
self.model.decoder.apply_weight_norm()
|
| 416 |
+
# torch.nn.utils.weight_norm(self.decoder.conv_pre)
|
| 417 |
+
# torch.nn.utils.weight_norm(self.decoder.conv_post)
|
| 418 |
+
for flow in self.model.flow.flows:
|
| 419 |
+
torch.nn.utils.weight_norm(flow.conv_pre)
|
| 420 |
+
torch.nn.utils.weight_norm(flow.conv_post)
|
| 421 |
+
|
| 422 |
+
discriminator = self.model.discriminator
|
| 423 |
+
self.model.discriminator = None
|
| 424 |
+
|
| 425 |
+
optimizer = torch.optim.AdamW(
|
| 426 |
+
self.model.parameters(),
|
| 427 |
+
training_args.learning_rate,
|
| 428 |
+
betas=[training_args.adam_beta1, training_args.adam_beta2],
|
| 429 |
+
eps=training_args.adam_epsilon,
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# Hack to be able to train on multiple device
|
| 433 |
+
disc_optimizer = torch.optim.AdamW(
|
| 434 |
+
discriminator.parameters(),
|
| 435 |
+
training_args.d_learning_rate,
|
| 436 |
+
betas=[training_args.d_adam_beta1, training_args.d_adam_beta2],
|
| 437 |
+
eps=training_args.adam_epsilon,
|
| 438 |
+
)
|
| 439 |
+
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
| 440 |
+
optimizer, gamma=training_args.lr_decay, last_epoch=-1
|
| 441 |
+
)
|
| 442 |
+
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
| 443 |
+
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1
|
| 444 |
+
)
|
| 445 |
+
self.models=(self.model,discriminator)
|
| 446 |
+
self.optimizers=(optimizer,disc_optimizer,scaler)
|
| 447 |
+
self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
|
| 448 |
+
self.tools=load_tools()
|
| 449 |
+
self.stute_mode=True
|
| 450 |
+
print(self.lr_schedulers)
|
| 451 |
|
| 452 |
|
| 453 |
|