Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -40,6 +40,86 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
| 40 |
# discriminator=False,
|
| 41 |
# duration=False
|
| 42 |
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
Lst=['input_ids',
|
| 44 |
'attention_mask',
|
| 45 |
'waveform',
|
|
@@ -690,6 +770,8 @@ with gr.Blocks() as interface:
|
|
| 690 |
output_ini = gr.Textbox(label="token")
|
| 691 |
label=gr.Label("hhh")
|
| 692 |
btn_init.click(loadd_d,[output_i],[label])
|
|
|
|
|
|
|
| 693 |
with gr.Accordion("init_Starting ", open=False):
|
| 694 |
btn_init = gr.Button("init start")
|
| 695 |
output_init = gr.Textbox(label="init")
|
|
|
|
| 40 |
# discriminator=False,
|
| 41 |
# duration=False
|
| 42 |
# )
|
| 43 |
+
class model_onxx:
|
| 44 |
+
def __init__(self):
|
| 45 |
+
self.model=None
|
| 46 |
+
self.n_onxx=""
|
| 47 |
+
pass
|
| 48 |
+
def function_change(self,n_model,token,n_onxx,choice):
|
| 49 |
+
if choice=="decoder":
|
| 50 |
+
|
| 51 |
+
V=self.convert_model_decoder_onxx(n_model,token,n_onxx)
|
| 52 |
+
elif choice=="all only decoder":
|
| 53 |
+
V=self.convert_model_decoder_onxx(n_model,token,n_onxx)
|
| 54 |
+
else:
|
| 55 |
+
V=self.convert_to_onnx_all(n_model,token,n_onxx)
|
| 56 |
+
return V
|
| 57 |
+
|
| 58 |
+
def install_model(self,n_model,token,n_onxx):
|
| 59 |
+
self.n_onxx=n_onxx
|
| 60 |
+
self.model= VitsModel.from_pretrained(n_model,token=token)
|
| 61 |
+
return self.model
|
| 62 |
+
def convert_model_decoder_onxx(self,n_model,token,namemodelonxx):
|
| 63 |
+
self.model= VitsModel.from_pretrained(n_model,token=token)
|
| 64 |
+
x=f"{namemodelonxx}.onnx"
|
| 65 |
+
return x
|
| 66 |
+
def convert_to_onnx_only_decoder(self,n_model,token,namemodelonxx):
|
| 67 |
+
model=VitsModel.from_pretrained(n_model,token=token)
|
| 68 |
+
x=f"{namemodelonxx}.onnx"
|
| 69 |
+
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
| 70 |
+
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
| 71 |
+
torch.onnx.export(
|
| 72 |
+
model, # The model to be exported
|
| 73 |
+
example_input, # Example input for the model
|
| 74 |
+
x, # The filename for the exported ONNX model
|
| 75 |
+
opset_version=11, # Use an appropriate ONNX opset version
|
| 76 |
+
input_names=['input'], # Name of the input layer
|
| 77 |
+
output_names=['output'], # Name of the output layer
|
| 78 |
+
dynamic_axes={
|
| 79 |
+
'input': {0: 'batch_size', 1: 'sequence_length'}, # Dynamic axes for variable-length inputs
|
| 80 |
+
'output': {0: 'batch_size'}
|
| 81 |
+
}
|
| 82 |
+
)
|
| 83 |
+
return x
|
| 84 |
+
def convert_to_onnx_all(self,n_model,token ,namemodelonxx):
|
| 85 |
+
|
| 86 |
+
model=VitsModel.from_pretrained(n_model,token=token)
|
| 87 |
+
x=f"{namemodelonxx}.onnx"
|
| 88 |
+
|
| 89 |
+
vocab_size = model.text_encoder.embed_tokens.weight.size(0)
|
| 90 |
+
example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
|
| 91 |
+
torch.onnx.export(
|
| 92 |
+
model, # The model to be exported
|
| 93 |
+
example_input, # Example input for the model
|
| 94 |
+
x, # The filename for the exported ONNX model
|
| 95 |
+
opset_version=11, # Use an appropriate ONNX opset version
|
| 96 |
+
input_names=['input'], # Name of the input layer
|
| 97 |
+
output_names=['output'], # Name of the output layer
|
| 98 |
+
dynamic_axes={
|
| 99 |
+
'input': {0: 'batch_size', 1: 'sequence_length'}, # Dynamic axes for variable-length inputs
|
| 100 |
+
'output': {0: 'batch_size'}
|
| 101 |
+
}
|
| 102 |
+
)
|
| 103 |
+
return x
|
| 104 |
+
def starrt(self):
|
| 105 |
+
#with gr.Blocks() as demo:
|
| 106 |
+
with gr.Row():
|
| 107 |
+
with gr.Column():
|
| 108 |
+
text_n_model=gr.Textbox(label="name model")
|
| 109 |
+
text_n_token=gr.Textbox(label="token")
|
| 110 |
+
text_n_onxx=gr.Textbox(label="name model onxx")
|
| 111 |
+
choice = gr.Dropdown(choices=["decoder", "all anoly decoder", "All"], label="My Dropdown")
|
| 112 |
+
|
| 113 |
+
with gr.Column():
|
| 114 |
+
|
| 115 |
+
btn=gr.Button("convert")
|
| 116 |
+
label=gr.Label("return name model onxx")
|
| 117 |
+
btn.click(self.function_change,[text_n_model,text_n_token,text_n_onxx,choice],[label])
|
| 118 |
+
#choice.change(fn=function_change, inputs=choice, outputs=label)
|
| 119 |
+
#return demo
|
| 120 |
+
c=model_onxx()
|
| 121 |
+
#cc=c.starrt()
|
| 122 |
+
###############################################################
|
| 123 |
Lst=['input_ids',
|
| 124 |
'attention_mask',
|
| 125 |
'waveform',
|
|
|
|
| 770 |
output_ini = gr.Textbox(label="token")
|
| 771 |
label=gr.Label("hhh")
|
| 772 |
btn_init.click(loadd_d,[output_i],[label])
|
| 773 |
+
with gr.Accordion("read model ", open=False):
|
| 774 |
+
c.starrt()
|
| 775 |
with gr.Accordion("init_Starting ", open=False):
|
| 776 |
btn_init = gr.Button("init start")
|
| 777 |
output_init = gr.Textbox(label="init")
|