Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -409,7 +409,7 @@ class TrinerModelVITS:
|
|
| 409 |
self.init_wandb()
|
| 410 |
# self.training_args=load_training_args(self.path_training_args)
|
| 411 |
# training_args= self.training_args
|
| 412 |
-
scaler = GradScaler(enabled=True)
|
| 413 |
for disc in self.model.discriminator.discriminators:
|
| 414 |
disc.apply_weight_norm()
|
| 415 |
self.model.decoder.apply_weight_norm()
|
|
@@ -421,33 +421,34 @@ class TrinerModelVITS:
|
|
| 421 |
|
| 422 |
discriminator = self.model.discriminator
|
| 423 |
self.model.discriminator = None
|
|
|
|
| 424 |
|
| 425 |
-
optimizer = torch.optim.AdamW(
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
)
|
| 431 |
|
| 432 |
-
# Hack to be able to train on multiple device
|
| 433 |
-
disc_optimizer = torch.optim.AdamW(
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
)
|
| 439 |
-
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
| 440 |
-
|
| 441 |
-
)
|
| 442 |
-
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
| 443 |
-
|
| 444 |
-
)
|
| 445 |
-
self.models=(self.model,discriminator)
|
| 446 |
-
self.optimizers=(optimizer,disc_optimizer,scaler)
|
| 447 |
-
self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
|
| 448 |
-
self.tools=load_tools()
|
| 449 |
-
self.stute_mode=True
|
| 450 |
-
print(self.lr_schedulers)
|
| 451 |
|
| 452 |
|
| 453 |
|
|
@@ -502,8 +503,8 @@ class TrinerModelVITS:
|
|
| 502 |
training_args.num_train_epochs=4
|
| 503 |
training_args.eval_steps=1000
|
| 504 |
|
| 505 |
-
|
| 506 |
-
|
| 507 |
|
| 508 |
|
| 509 |
# # Initialize optimizer, lr_scheduler
|
|
@@ -518,33 +519,34 @@ class TrinerModelVITS:
|
|
| 518 |
|
| 519 |
# discriminator = self.model.discriminator
|
| 520 |
# self.model.discriminator = None
|
|
|
|
| 521 |
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
|
| 529 |
-
#
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
# self.models=(self.model,discriminator)
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
|
| 549 |
|
| 550 |
|
|
|
|
| 409 |
self.init_wandb()
|
| 410 |
# self.training_args=load_training_args(self.path_training_args)
|
| 411 |
# training_args= self.training_args
|
| 412 |
+
# scaler = GradScaler(enabled=True)
|
| 413 |
for disc in self.model.discriminator.discriminators:
|
| 414 |
disc.apply_weight_norm()
|
| 415 |
self.model.decoder.apply_weight_norm()
|
|
|
|
| 421 |
|
| 422 |
discriminator = self.model.discriminator
|
| 423 |
self.model.discriminator = None
|
| 424 |
+
self.models=(self.model,discriminator)
|
| 425 |
|
| 426 |
+
# optimizer = torch.optim.AdamW(
|
| 427 |
+
# self.model.parameters(),
|
| 428 |
+
# 2e-4,
|
| 429 |
+
# betas=[0.8, 0.99],
|
| 430 |
+
# # eps=training_args.adam_epsilon,
|
| 431 |
+
# )
|
| 432 |
|
| 433 |
+
# # Hack to be able to train on multiple device
|
| 434 |
+
# disc_optimizer = torch.optim.AdamW(
|
| 435 |
+
# discriminator.parameters(),
|
| 436 |
+
# 2e-4,
|
| 437 |
+
# betas=[0.8, 0.99],
|
| 438 |
+
# # eps=training_args.adam_epsilon,
|
| 439 |
+
# )
|
| 440 |
+
# lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
| 441 |
+
# optimizer,gamma=0.999875, last_epoch=-1
|
| 442 |
+
# )
|
| 443 |
+
# disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
| 444 |
+
# disc_optimizer, gamma=0.999875,last_epoch=-1
|
| 445 |
+
# )
|
| 446 |
+
# self.models=(self.model,discriminator)
|
| 447 |
+
# self.optimizers=(optimizer,disc_optimizer,scaler)
|
| 448 |
+
# self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
|
| 449 |
+
# self.tools=load_tools()
|
| 450 |
+
# self.stute_mode=True
|
| 451 |
+
# print(self.lr_schedulers)
|
| 452 |
|
| 453 |
|
| 454 |
|
|
|
|
| 503 |
training_args.num_train_epochs=4
|
| 504 |
training_args.eval_steps=1000
|
| 505 |
|
| 506 |
+
set_seed(training_args.seed)
|
| 507 |
+
scaler = GradScaler(enabled=training_args.fp16)
|
| 508 |
|
| 509 |
|
| 510 |
# # Initialize optimizer, lr_scheduler
|
|
|
|
| 519 |
|
| 520 |
# discriminator = self.model.discriminator
|
| 521 |
# self.model.discriminator = None
|
| 522 |
+
model,discriminator=self.models
|
| 523 |
|
| 524 |
+
optimizer = torch.optim.AdamW(
|
| 525 |
+
model.parameters(),
|
| 526 |
+
training_args.learning_rate,
|
| 527 |
+
betas=[training_args.adam_beta1, training_args.adam_beta2],
|
| 528 |
+
eps=training_args.adam_epsilon,
|
| 529 |
+
)
|
| 530 |
|
| 531 |
+
# Hack to be able to train on multiple device
|
| 532 |
+
disc_optimizer = torch.optim.AdamW(
|
| 533 |
+
discriminator.parameters(),
|
| 534 |
+
training_args.d_learning_rate,
|
| 535 |
+
betas=[training_args.d_adam_beta1, training_args.d_adam_beta2],
|
| 536 |
+
eps=training_args.adam_epsilon,
|
| 537 |
+
)
|
| 538 |
+
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
| 539 |
+
optimizer, gamma=training_args.lr_decay, last_epoch=-1
|
| 540 |
+
)
|
| 541 |
+
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
| 542 |
+
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1
|
| 543 |
+
)
|
| 544 |
# self.models=(self.model,discriminator)
|
| 545 |
+
self.optimizers=(optimizer,disc_optimizer,scaler)
|
| 546 |
+
self.lr_schedulers=(lr_scheduler,disc_lr_scheduler)
|
| 547 |
+
self.tools=load_tools()
|
| 548 |
+
self.stute_mode=True
|
| 549 |
+
print(self.lr_schedulers)
|
| 550 |
|
| 551 |
|
| 552 |
|