Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,131 +1,82 @@
|
|
| 1 |
-
from
|
| 2 |
-
|
| 3 |
-
import spaces
|
| 4 |
-
import torch
|
| 5 |
from transformers import AutoTokenizer, VitsModel
|
| 6 |
-
import
|
| 7 |
import numpy as np
|
|
|
|
| 8 |
import noisereduce as nr
|
| 9 |
-
import
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
# قراءة التوكن من Secrets
|
| 13 |
-
token = os.getenv("acees-token")
|
| 14 |
|
| 15 |
-
#
|
| 16 |
models = {}
|
| 17 |
|
| 18 |
-
# اختيار الجهاز
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def remove_noise_nr(audio_data, sr=16000):
|
| 24 |
return nr.reduce_noise(y=audio_data, hop_length=256, sr=sr)
|
| 25 |
|
| 26 |
-
|
| 27 |
-
# دالة inference (streaming / non-streaming)
|
| 28 |
-
def _inference_forward_stream(
|
| 29 |
-
self,
|
| 30 |
-
input_ids: Optional[torch.Tensor] = None,
|
| 31 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 32 |
-
speaker_embeddings: Optional[torch.Tensor] = None,
|
| 33 |
-
chunk_size: int = 32,
|
| 34 |
-
is_streaming: bool = True
|
| 35 |
-
) -> Iterator[torch.Tensor]:
|
| 36 |
-
|
| 37 |
-
padding_mask = attention_mask.unsqueeze(-1).float() if attention_mask is not None else torch.ones_like(input_ids).unsqueeze(-1).float()
|
| 38 |
-
text_encoder_output = self.text_encoder(input_ids=input_ids, padding_mask=padding_mask, attention_mask=attention_mask)
|
| 39 |
-
hidden_states = text_encoder_output[0].transpose(1, 2)
|
| 40 |
-
input_padding_mask = padding_mask.transpose(1, 2)
|
| 41 |
-
|
| 42 |
-
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
|
| 43 |
-
length_scale = 1.0 / self.speaking_rate
|
| 44 |
-
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
|
| 45 |
-
predicted_lengths = torch.clamp_min(torch.sum(duration, [1,2]), 1).long()
|
| 46 |
-
|
| 47 |
-
indices = torch.arange(predicted_lengths.max(), device=predicted_lengths.device)
|
| 48 |
-
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
|
| 49 |
-
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
|
| 50 |
-
|
| 51 |
-
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
|
| 52 |
-
batch_size, _, output_length, input_length = attn_mask.shape
|
| 53 |
-
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
|
| 54 |
-
indices = torch.arange(output_length, device=duration.device)
|
| 55 |
-
valid_indices = indices.unsqueeze(0) < cum_duration
|
| 56 |
-
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
|
| 57 |
-
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0,0,1,0,0,0])[:, :-1]
|
| 58 |
-
attn = padded_indices.unsqueeze(1).transpose(2,3) * attn_mask
|
| 59 |
-
|
| 60 |
-
prior_means = text_encoder_output[1]
|
| 61 |
-
prior_log_variances = text_encoder_output[2]
|
| 62 |
-
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
|
| 63 |
-
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
|
| 64 |
-
spectrogram = latents * output_padding_mask
|
| 65 |
-
|
| 66 |
-
if is_streaming:
|
| 67 |
-
for i in range(0, spectrogram.size(-1), chunk_size):
|
| 68 |
-
with torch.no_grad():
|
| 69 |
-
wav = self.decoder(spectrogram[:,:,i:i+chunk_size], speaker_embeddings)
|
| 70 |
-
yield wav.squeeze().cpu().numpy()
|
| 71 |
-
else:
|
| 72 |
-
with torch.no_grad():
|
| 73 |
-
wav = self.decoder(spectrogram, speaker_embeddings)
|
| 74 |
-
yield wav.squeeze().cpu().numpy()
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
# تحميل النموذج + التوكن
|
| 78 |
def get_model(name_model):
|
| 79 |
global models
|
| 80 |
if name_model in models:
|
| 81 |
tokenizer = AutoTokenizer.from_pretrained(name_model, token=token)
|
| 82 |
return models[name_model], tokenizer
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
for flow in
|
| 87 |
torch.nn.utils.weight_norm(flow.conv_pre)
|
| 88 |
torch.nn.utils.weight_norm(flow.conv_post)
|
|
|
|
|
|
|
| 89 |
|
| 90 |
tokenizer = AutoTokenizer.from_pretrained(name_model, token=token)
|
| 91 |
-
return
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
)
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
| 131 |
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
|
|
|
|
|
|
| 3 |
from transformers import AutoTokenizer, VitsModel
|
| 4 |
+
import torch
|
| 5 |
import numpy as np
|
| 6 |
+
import os
|
| 7 |
import noisereduce as nr
|
| 8 |
+
import base64
|
| 9 |
+
import io
|
| 10 |
+
import soundfile as sf
|
| 11 |
|
| 12 |
# قراءة التوكن من Secrets
|
| 13 |
+
token = os.getenv("acees-token")
|
| 14 |
|
| 15 |
+
# تخزين النماذج
|
| 16 |
models = {}
|
| 17 |
|
| 18 |
+
# اختيار الجهاز
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
|
| 21 |
+
# إزالة الضوضاء
|
| 22 |
+
def remove_noise(audio_data, sr=16000):
|
|
|
|
| 23 |
return nr.reduce_noise(y=audio_data, hop_length=256, sr=sr)
|
| 24 |
|
| 25 |
+
# تحميل النموذج
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def get_model(name_model):
|
| 27 |
global models
|
| 28 |
if name_model in models:
|
| 29 |
tokenizer = AutoTokenizer.from_pretrained(name_model, token=token)
|
| 30 |
return models[name_model], tokenizer
|
| 31 |
|
| 32 |
+
model = VitsModel.from_pretrained(name_model, token=token)
|
| 33 |
+
model.decoder.apply_weight_norm()
|
| 34 |
+
for flow in model.flow.flows:
|
| 35 |
torch.nn.utils.weight_norm(flow.conv_pre)
|
| 36 |
torch.nn.utils.weight_norm(flow.conv_post)
|
| 37 |
+
model.to(device)
|
| 38 |
+
models[name_model] = model
|
| 39 |
|
| 40 |
tokenizer = AutoTokenizer.from_pretrained(name_model, token=token)
|
| 41 |
+
return model, tokenizer
|
| 42 |
+
|
| 43 |
+
# نموذج البيانات للـ POST
|
| 44 |
+
class TTSRequest(BaseModel):
|
| 45 |
+
text: str
|
| 46 |
+
name_model: str = "wasmdashai/vits-ar-sa-huba-v2"
|
| 47 |
+
speaking_rate: float = 16000.0
|
| 48 |
+
|
| 49 |
+
# إنشاء التطبيق
|
| 50 |
+
app = FastAPI(title="VITS TTS API", description="Convert Arabic/English text to speech using VITS models")
|
| 51 |
+
|
| 52 |
+
@app.get("/", summary="Health check")
|
| 53 |
+
def home():
|
| 54 |
+
return {"message": "FastAPI VITS TTS service is running"}
|
| 55 |
+
|
| 56 |
+
@app.post("/predict/", summary="Text-to-Speech", description="Convert text to audio (WAV, Base64)")
|
| 57 |
+
def modelspeech(req: TTSRequest):
|
| 58 |
+
try:
|
| 59 |
+
model, tokenizer = get_model(req.name_model)
|
| 60 |
+
inputs = tokenizer(req.text, return_tensors="pt").to(device)
|
| 61 |
+
model.speaking_rate = req.speaking_rate
|
| 62 |
+
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
outputs = model(**inputs)
|
| 65 |
+
waveform = outputs.waveform[0].cpu().numpy()
|
| 66 |
+
|
| 67 |
+
# إزالة الضوضاء
|
| 68 |
+
waveform = remove_noise(waveform)
|
| 69 |
+
|
| 70 |
+
# تحويل الصوت إلى Base64 WAV
|
| 71 |
+
buffer = io.BytesIO()
|
| 72 |
+
sf.write(buffer, waveform, samplerate=model.config.sampling_rate, format="WAV")
|
| 73 |
+
buffer.seek(0)
|
| 74 |
+
audio_base64 = base64.b64encode(buffer.read()).decode("utf-8")
|
| 75 |
+
|
| 76 |
+
return {
|
| 77 |
+
"sampling_rate": model.config.sampling_rate,
|
| 78 |
+
"audio_base64": audio_base64
|
| 79 |
+
}
|
|
|
|
| 80 |
|
| 81 |
+
except Exception as e:
|
| 82 |
+
raise HTTPException(status_code=500, detail=str(e))
|