wcy1122 commited on
Commit
5215a67
·
1 Parent(s): 882ddf8

update code

Browse files
Files changed (47) hide show
  1. .gitignore +0 -220
  2. LICENSE +201 -0
  3. app.py +30 -31
  4. pipeline_flux_kontext.py → dreamomni2/pipeline_dreamomni2.py +3 -6
  5. {edit_tests → example_input/edit_tests}/1/ref_0.jpg +0 -0
  6. {edit_tests → example_input/edit_tests}/1/ref_1.jpg +0 -0
  7. {edit_tests → example_input/edit_tests}/1/res.jpg +0 -0
  8. {edit_tests → example_input/edit_tests}/2/ref_0.jpg +0 -0
  9. {edit_tests → example_input/edit_tests}/2/ref_1.jpg +0 -0
  10. {edit_tests → example_input/edit_tests}/2/res.jpg +0 -0
  11. {edit_tests → example_input/edit_tests}/3/ref_0.jpg +0 -0
  12. {edit_tests → example_input/edit_tests}/3/ref_1.jpg +0 -0
  13. {edit_tests → example_input/edit_tests}/3/res.jpg +0 -0
  14. {edit_tests → example_input/edit_tests}/4/ref_0.jpg +0 -0
  15. {edit_tests → example_input/edit_tests}/4/ref_1.jpg +0 -0
  16. {edit_tests → example_input/edit_tests}/4/res.jpg +0 -0
  17. {edit_tests → example_input/edit_tests}/5/ref_0.jpg +0 -0
  18. {edit_tests → example_input/edit_tests}/5/ref_1.jpg +0 -0
  19. {edit_tests → example_input/edit_tests}/5/res.jpg +0 -0
  20. {edit_tests → example_input/edit_tests}/6/ref_0.jpg +0 -0
  21. {edit_tests → example_input/edit_tests}/6/ref_1.jpg +0 -0
  22. {edit_tests → example_input/edit_tests}/6/res.jpg +0 -0
  23. {edit_tests → example_input/edit_tests}/7/ref_0.jpg +0 -0
  24. {edit_tests → example_input/edit_tests}/7/ref_1.jpg +0 -0
  25. {edit_tests → example_input/edit_tests}/7/res.jpg +0 -0
  26. {edit_tests → example_input/edit_tests}/8/ref_0.jpg +0 -0
  27. {edit_tests → example_input/edit_tests}/8/ref_1.jpg +0 -0
  28. {edit_tests → example_input/edit_tests}/8/res.jpg +0 -0
  29. {edit_tests → example_input/edit_tests}/edi_res.png +2 -2
  30. {edit_tests → example_input/edit_tests}/ref.jpg +0 -0
  31. {edit_tests → example_input/edit_tests}/src.jpg +0 -0
  32. {gen_tests → example_input/gen_tests}/gen_res.png +2 -2
  33. {gen_tests → example_input/gen_tests}/img1.jpg +0 -0
  34. {gen_tests → example_input/gen_tests}/img2.jpg +0 -0
  35. imgs/gallery.png +3 -0
  36. inference_edit.py +180 -0
  37. inference_gen.py +192 -0
  38. my_datasets/.gitkeep +327 -0
  39. script.sh +0 -12
  40. utils/fsdp_utils.py +327 -0
  41. utils/infer_utils.py +163 -0
  42. utils/init_utils.py +48 -0
  43. utils/parser_config.py +314 -0
  44. utils/utils.py +166 -0
  45. utils/vprocess.py +568 -0
  46. web_edit.py +21 -21
  47. web_generate.py +13 -13
.gitignore DELETED
@@ -1,220 +0,0 @@
1
- # Byte-compiled / optimized / DLL files
2
- __pycache__/
3
- *.py[codz]
4
- *$py.class
5
-
6
- # C extensions
7
- *.so
8
-
9
- # Distribution / packaging
10
- .Python
11
- build/
12
- develop-eggs/
13
- dist/
14
- downloads/
15
- eggs/
16
- .eggs/
17
- lib/
18
- lib64/
19
- parts/
20
- sdist/
21
- var/
22
- wheels/
23
- share/python-wheels/
24
- *.egg-info/
25
- .installed.cfg
26
- *.egg
27
- MANIFEST
28
-
29
- # PyInstaller
30
- # Usually these files are written by a python script from a template
31
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
- *.manifest
33
- *.spec
34
-
35
- # Installer logs
36
- pip-log.txt
37
- pip-delete-this-directory.txt
38
-
39
- # Unit test / coverage reports
40
- htmlcov/
41
- .tox/
42
- .nox/
43
- .coverage
44
- .coverage.*
45
- .cache
46
- nosetests.xml
47
- coverage.xml
48
- *.cover
49
- *.py.cover
50
- .hypothesis/
51
- .pytest_cache/
52
- cover/
53
-
54
- # Translations
55
- *.mo
56
- *.pot
57
-
58
- # Django stuff:
59
- *.log
60
- local_settings.py
61
- db.sqlite3
62
- db.sqlite3-journal
63
-
64
- # Flask stuff:
65
- instance/
66
- .webassets-cache
67
-
68
- # Scrapy stuff:
69
- .scrapy
70
-
71
- # Sphinx documentation
72
- docs/_build/
73
-
74
- # PyBuilder
75
- .pybuilder/
76
- target/
77
-
78
- # Jupyter Notebook
79
- .ipynb_checkpoints
80
-
81
- # IPython
82
- profile_default/
83
- ipython_config.py
84
-
85
- # pyenv
86
- # For a library or package, you might want to ignore these files since the code is
87
- # intended to run in multiple environments; otherwise, check them in:
88
- # .python-version
89
-
90
- # pipenv
91
- # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
- # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
- # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
- # install all needed dependencies.
95
- # Pipfile.lock
96
-
97
- # UV
98
- # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
99
- # This is especially recommended for binary packages to ensure reproducibility, and is more
100
- # commonly ignored for libraries.
101
- # uv.lock
102
-
103
- # poetry
104
- # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
105
- # This is especially recommended for binary packages to ensure reproducibility, and is more
106
- # commonly ignored for libraries.
107
- # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
108
- # poetry.lock
109
- # poetry.toml
110
-
111
- # pdm
112
- # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
113
- # pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
114
- # https://pdm-project.org/en/latest/usage/project/#working-with-version-control
115
- # pdm.lock
116
- # pdm.toml
117
- .pdm-python
118
- .pdm-build/
119
-
120
- # pixi
121
- # Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
122
- # pixi.lock
123
- # Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
124
- # in the .venv directory. It is recommended not to include this directory in version control.
125
- .pixi
126
-
127
- # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
128
- __pypackages__/
129
-
130
- # Celery stuff
131
- celerybeat-schedule
132
- celerybeat.pid
133
-
134
- # Redis
135
- *.rdb
136
- *.aof
137
- *.pid
138
-
139
- # RabbitMQ
140
- mnesia/
141
- rabbitmq/
142
- rabbitmq-data/
143
-
144
- # ActiveMQ
145
- activemq-data/
146
-
147
- # SageMath parsed files
148
- *.sage.py
149
-
150
- # Environments
151
- .env
152
- .envrc
153
- .venv
154
- env/
155
- venv/
156
- ENV/
157
- env.bak/
158
- venv.bak/
159
-
160
- # Spyder project settings
161
- .spyderproject
162
- .spyproject
163
-
164
- # Rope project settings
165
- .ropeproject
166
-
167
- # mkdocs documentation
168
- /site
169
-
170
- # mypy
171
- .mypy_cache/
172
- .dmypy.json
173
- dmypy.json
174
-
175
- # Pyre type checker
176
- .pyre/
177
-
178
- # pytype static type analyzer
179
- .pytype/
180
-
181
- # Cython debug symbols
182
- cython_debug/
183
-
184
- # PyCharm
185
- # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
186
- # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
187
- # and can be added to the global gitignore or merged into this file. For a more nuclear
188
- # option (not recommended) you can uncomment the following to ignore the entire idea folder.
189
- # .idea/
190
-
191
- # Abstra
192
- # Abstra is an AI-powered process automation framework.
193
- # Ignore directories containing user credentials, local state, and settings.
194
- # Learn more at https://abstra.io/docs
195
- .abstra/
196
-
197
- # Visual Studio Code
198
- # Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
199
- # that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
200
- # and can be added to the global gitignore or merged into this file. However, if you prefer,
201
- # you could uncomment the following to ignore the entire vscode folder
202
- # .vscode/
203
-
204
- # Ruff stuff:
205
- .ruff_cache/
206
-
207
- # PyPI configuration file
208
- .pypirc
209
-
210
- # Marimo
211
- marimo/_static/
212
- marimo/_lsp/
213
- __marimo__/
214
-
215
- # Streamlit
216
- .streamlit/secrets.toml
217
-
218
- tmp_script.sh
219
- .gradio/
220
- gradio_tmp
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
app.py CHANGED
@@ -8,12 +8,16 @@ import argparse
8
  from huggingface_hub import login, snapshot_download
9
 
10
  import torch
11
- from pipeline_flux_kontext import FluxKontextPipeline
12
  from diffusers.utils import load_image
13
  from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
14
- from qwen_vl_utils import process_vision_info
15
 
16
 
 
 
 
 
17
  def _load_model_processor():
18
 
19
  local_dir = snapshot_download(
@@ -21,22 +25,22 @@ def _load_model_processor():
21
  revision="main",
22
  allow_patterns=["vlm-model/**", "edit_lora/**"],
23
  )
24
- local_vlm_dir = os.path.join(local_dir, 'vlm-model')
25
- local_lora_dir = os.path.join(local_dir, 'edit_lora')
26
 
27
- print(f"Loading models from vlm_path: {local_vlm_dir}, edit_lora_path: {local_lora_dir}")
28
- pipe = FluxKontextPipeline.from_pretrained(
29
  "black-forest-labs/FLUX.1-Kontext-dev",
30
  torch_dtype=torch.bfloat16
31
  )
32
- pipe.load_lora_weights(local_lora_dir, adapter_name="edit")
33
  pipe.set_adapters(["edit"], adapter_weights=[1])
34
 
35
  vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
36
- local_vlm_dir,
37
  torch_dtype="bfloat16"
38
  )
39
- processor = AutoProcessor.from_pretrained(local_vlm_dir)
40
  return vlm_model, processor, pipe
41
 
42
 
@@ -88,28 +92,23 @@ def _launch_demo(vlm_model, processor, pipe):
88
  key=lambda res: abs((res[0] / res[1]) - input_ratio)
89
  )
90
  return closest_resolution
91
-
92
- def extract_gen_content(text):
93
- text = text[6:-7]
94
- return text
95
 
96
  @spaces.GPU()
97
  def perform_edit(input_img_paths, input_instruction, output_path):
98
  prefix = " It is editing task."
99
- source_imgs = [load_image(path) for path in input_img_paths]
100
- resized_imgs = []
101
- for img in source_imgs:
102
- target_resolution = find_closest_resolution(img.width, img.height, PREFERRED_KONTEXT_RESOLUTIONS)
103
- resized_img = img.resize(target_resolution, Image.LANCZOS)
104
- resized_imgs.append(resized_img)
105
  prompt = infer_vlm(input_img_paths, input_instruction, prefix)
106
  prompt = extract_gen_content(prompt)
107
  print(f"Generated Prompt for VLM: {prompt}")
108
 
109
  image = pipe(
110
- images=resized_imgs,
111
- height=resized_imgs[0].height,
112
- width=resized_imgs[0].width,
113
  prompt=prompt,
114
  num_inference_steps=30,
115
  guidance_scale=3.5,
@@ -205,15 +204,15 @@ def _launch_demo(vlm_model, processor, pipe):
205
  gr.Examples(
206
  label="Editing Examples",
207
  examples=[
208
- ["edit_tests/4/ref_0.jpg", "edit_tests/4/ref_1.jpg", "Replace the first image have the same image style as the second image.","edit_tests/4/res.jpg"],
209
- ["edit_tests/5/ref_0.jpg", "edit_tests/5/ref_1.jpg", "Make the person in the first image have the same hairstyle as the person in the second image.","edit_tests/5/res.jpg"],
210
- ["edit_tests/src.jpg", "edit_tests/ref.jpg", "Make the woman from the second image stand on the road in the first image.","edit_tests/edi_res.png"],
211
- ["edit_tests/1/ref_0.jpg", "edit_tests/1/ref_1.jpg", "Replace the lantern in the first image with the dog in the second image.","edit_tests/1/res.jpg"],
212
- ["edit_tests/2/ref_0.jpg", "edit_tests/2/ref_1.jpg", "Replace the suit in the first image with the clothes in the second image.","edit_tests/2/res.jpg"],
213
- ["edit_tests/3/ref_0.jpg", "edit_tests/3/ref_1.jpg", "Make the first image has the same light condition as the second image.","edit_tests/3/res.jpg"],
214
- ["edit_tests/6/ref_0.jpg", "edit_tests/6/ref_1.jpg", "Make the words in the first image have the same font as the words in the second image.","edit_tests/6/res.jpg"],
215
- ["edit_tests/7/ref_0.jpg", "edit_tests/7/ref_1.jpg", "Make the car in the first image have the same pattern as the mouse in the second image.","edit_tests/7/res.jpg"],
216
- ["edit_tests/8/ref_0.jpg", "edit_tests/8/ref_1.jpg", "Make the dress in the first image have the same pattern in the second image.","edit_tests/8/res.jpg"],
217
  ],
218
  inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
219
  cache_examples=False,
 
8
  from huggingface_hub import login, snapshot_download
9
 
10
  import torch
11
+ from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
12
  from diffusers.utils import load_image
13
  from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
14
+ from utils.vprocess import process_vision_info, resizeinput
15
 
16
 
17
+ def extract_gen_content(text):
18
+ text = text[6:-7]
19
+ return text
20
+
21
  def _load_model_processor():
22
 
23
  local_dir = snapshot_download(
 
25
  revision="main",
26
  allow_patterns=["vlm-model/**", "edit_lora/**"],
27
  )
28
+ vlm_dir = os.path.join(local_dir, 'vlm-model')
29
+ lora_dir = os.path.join(local_dir, 'edit_lora')
30
 
31
+ print(f"Loading models from vlm_path: {vlm_dir}, edit_lora_path: {lora_dir}")
32
+ pipe = DreamOmni2Pipeline.from_pretrained(
33
  "black-forest-labs/FLUX.1-Kontext-dev",
34
  torch_dtype=torch.bfloat16
35
  )
36
+ pipe.load_lora_weights(lora_dir, adapter_name="edit")
37
  pipe.set_adapters(["edit"], adapter_weights=[1])
38
 
39
  vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
40
+ vlm_dir,
41
  torch_dtype="bfloat16"
42
  )
43
+ processor = AutoProcessor.from_pretrained(vlm_dir)
44
  return vlm_model, processor, pipe
45
 
46
 
 
92
  key=lambda res: abs((res[0] / res[1]) - input_ratio)
93
  )
94
  return closest_resolution
 
 
 
 
95
 
96
  @spaces.GPU()
97
  def perform_edit(input_img_paths, input_instruction, output_path):
98
  prefix = " It is editing task."
99
+ source_imgs = []
100
+ for path in input_img_paths:
101
+ img = load_image(path)
102
+ # source_imgs.append(img)
103
+ source_imgs.append(resizeinput(img))
 
104
  prompt = infer_vlm(input_img_paths, input_instruction, prefix)
105
  prompt = extract_gen_content(prompt)
106
  print(f"Generated Prompt for VLM: {prompt}")
107
 
108
  image = pipe(
109
+ images=source_imgs,
110
+ height=source_imgs[0].height,
111
+ width=source_imgs[0].width,
112
  prompt=prompt,
113
  num_inference_steps=30,
114
  guidance_scale=3.5,
 
204
  gr.Examples(
205
  label="Editing Examples",
206
  examples=[
207
+ ["example_input/edit_tests/4/ref_0.jpg", "example_input/edit_tests/4/ref_1.jpg", "Replace the first image have the same image style as the second image.","example_input/edit_tests/4/res.jpg"],
208
+ ["example_input/edit_tests/5/ref_0.jpg", "example_input/edit_tests/5/ref_1.jpg", "Make the person in the first image have the same hairstyle as the person in the second image.","example_input/edit_tests/5/res.jpg"],
209
+ ["example_input/edit_tests/src.jpg", "example_input/edit_tests/ref.jpg", "Make the woman from the second image stand on the road in the first image.","example_input/edit_tests/edi_res.png"],
210
+ ["example_input/edit_tests/1/ref_0.jpg", "example_input/edit_tests/1/ref_1.jpg", "Replace the lantern in the first image with the dog in the second image.","example_input/edit_tests/1/res.jpg"],
211
+ ["example_input/edit_tests/2/ref_0.jpg", "example_input/edit_tests/2/ref_1.jpg", "Replace the suit in the first image with the clothes in the second image.","example_input/edit_tests/2/res.jpg"],
212
+ ["example_input/edit_tests/3/ref_0.jpg", "example_input/edit_tests/3/ref_1.jpg", "Make the first image has the same light condition as the second image.","example_input/edit_tests/3/res.jpg"],
213
+ ["example_input/edit_tests/6/ref_0.jpg", "example_input/edit_tests/6/ref_1.jpg", "Make the words in the first image have the same font as the words in the second image.","example_input/edit_tests/6/res.jpg"],
214
+ ["example_input/edit_tests/7/ref_0.jpg", "example_input/edit_tests/7/ref_1.jpg", "Make the car in the first image have the same pattern as the mouse in the second image.","example_input/edit_tests/7/res.jpg"],
215
+ ["example_input/edit_tests/8/ref_0.jpg", "example_input/edit_tests/8/ref_1.jpg", "Make the dress in the first image have the same pattern in the second image.","example_input/edit_tests/8/res.jpg"],
216
  ],
217
  inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
218
  cache_examples=False,
pipeline_flux_kontext.py → dreamomni2/pipeline_dreamomni2.py RENAMED
@@ -57,10 +57,10 @@ EXAMPLE_DOC_STRING = """
57
  Examples:
58
  ```py
59
  >>> import torch
60
- >>> from diffusers import FluxKontextPipeline
61
  >>> from diffusers.utils import load_image
62
 
63
- >>> pipe = FluxKontextPipeline.from_pretrained(
64
  ... "black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
65
  ... )
66
  >>> pipe.to("cuda")
@@ -187,7 +187,7 @@ def retrieve_latents(
187
  raise AttributeError("Could not access latents of provided encoder_output")
188
 
189
 
190
- class FluxKontextPipeline(
191
  DiffusionPipeline,
192
  FluxLoraLoaderMixin,
193
  FromSingleFileMixin,
@@ -694,10 +694,7 @@ class FluxKontextPipeline(
694
  image_ids = self._prepare_latent_image_ids(
695
  batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype
696
  )
697
- # image ids are the same as latent ids with the first dimension set to 1 instead of 0
698
- # image_ids[..., 0] = 0.9+i*0.1
699
  image_ids[..., 0] = i+1
700
- # image_ids[..., 1] += h_offset
701
  image_ids[..., 2] += w_offset
702
  tp_image_latents.append(image_latents)
703
  tp_image_ids.append(image_ids)
 
57
  Examples:
58
  ```py
59
  >>> import torch
60
+ >>> from diffusers import DreamOmni2Pipeline
61
  >>> from diffusers.utils import load_image
62
 
63
+ >>> pipe = DreamOmni2Pipeline.from_pretrained(
64
  ... "black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
65
  ... )
66
  >>> pipe.to("cuda")
 
187
  raise AttributeError("Could not access latents of provided encoder_output")
188
 
189
 
190
+ class DreamOmni2Pipeline(
191
  DiffusionPipeline,
192
  FluxLoraLoaderMixin,
193
  FromSingleFileMixin,
 
694
  image_ids = self._prepare_latent_image_ids(
695
  batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype
696
  )
 
 
697
  image_ids[..., 0] = i+1
 
698
  image_ids[..., 2] += w_offset
699
  tp_image_latents.append(image_latents)
700
  tp_image_ids.append(image_ids)
{edit_tests → example_input/edit_tests}/1/ref_0.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/1/ref_1.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/1/res.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/2/ref_0.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/2/ref_1.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/2/res.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/3/ref_0.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/3/ref_1.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/3/res.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/4/ref_0.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/4/ref_1.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/4/res.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/5/ref_0.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/5/ref_1.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/5/res.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/6/ref_0.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/6/ref_1.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/6/res.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/7/ref_0.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/7/ref_1.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/7/res.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/8/ref_0.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/8/ref_1.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/8/res.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/edi_res.png RENAMED
File without changes
{edit_tests → example_input/edit_tests}/ref.jpg RENAMED
File without changes
{edit_tests → example_input/edit_tests}/src.jpg RENAMED
File without changes
{gen_tests → example_input/gen_tests}/gen_res.png RENAMED
File without changes
{gen_tests → example_input/gen_tests}/img1.jpg RENAMED
File without changes
{gen_tests → example_input/gen_tests}/img2.jpg RENAMED
File without changes
imgs/gallery.png ADDED

Git LFS Details

  • SHA256: b3a6af8acb72fab49e3eb9e5d66d129706335e91216fb6365fb15d1c285efef8
  • Pointer size: 132 Bytes
  • Size of remote file: 2.61 MB
inference_edit.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ try:
3
+ import torch_npu
4
+ from torch_npu.contrib import transfer_to_npu
5
+ import importlib
6
+ import transformers.utils
7
+ import transformers.models
8
+ origin_utils = transformers.utils
9
+ origin_models = transformers.models
10
+ import flash_attn
11
+ flash_attn.hack_transformers_flash_attn_2_available_check()
12
+ importlib.reload(transformers.utils)
13
+ importlib.reload(transformers.models)
14
+ origin_func = torch.nn.functional.interpolate
15
+ def new_func(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False):
16
+ if mode == "bilinear":
17
+ dtype = input.dtype
18
+ res = origin_func(input.to(torch.bfloat16), size, scale_factor, mode, align_corners, recompute_scale_factor, antialias)
19
+ return res.to(dtype)
20
+ else:
21
+ return origin_func(input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias)
22
+ torch.nn.functional.interpolate = new_func
23
+ from utils import patch_npu_record_stream
24
+ from utils import patch_npu_diffusers_get_1d_rotary_pos_embed
25
+ patch_npu_record_stream()
26
+ patch_npu_diffusers_get_1d_rotary_pos_embed()
27
+ USE_NPU = True
28
+ except:
29
+ USE_NPU = False
30
+ from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
31
+ from diffusers.utils import load_image
32
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
33
+ # from qwen_vl_utils import process_vision_info
34
+ from utils.vprocess import process_vision_info, resizeinput
35
+ import os
36
+ import argparse
37
+ from tqdm import tqdm
38
+ import json
39
+ from PIL import Image
40
+ import re
41
+ import argparse
42
+
43
+ if USE_NPU:
44
+ device = "npu"
45
+ else:
46
+ device = "cuda"
47
+
48
+ def extract_gen_content(text):
49
+ text = text[6:-7]
50
+
51
+ return text
52
+
53
+ def parse_args():
54
+ """Parses command-line arguments for model paths and server configuration."""
55
+ parser = argparse.ArgumentParser()
56
+ parser.add_argument(
57
+ "--vlm_path",
58
+ type=str,
59
+ default="./models/vlm-model",
60
+ help="Path to the VLM model directory."
61
+ )
62
+ parser.add_argument(
63
+ "--edit_lora_path",
64
+ type=str,
65
+ default="./models/edit_lora",
66
+ help="Path to the FLUX.1-Kontext editing LoRA weights directory."
67
+ )
68
+ parser.add_argument(
69
+ "--base_model_path",
70
+ type=str,
71
+ default="black-forest-labs/FLUX.1-Kontext-dev",
72
+ help="Path to the FLUX.1-Kontext editing."
73
+ )
74
+ parser.add_argument(
75
+ "--input_img_path",
76
+ type=str,
77
+ nargs='+', # Accept one or more input paths
78
+ default=["example_input/edit_tests/src.jpg", "example_input/edit_tests/ref.jpg"],
79
+ help="List of input image paths (e.g., src and ref images)."
80
+ )
81
+ # Argument for the input instruction
82
+ parser.add_argument(
83
+ "--input_instruction",
84
+ type=str,
85
+ default="Make the woman from the second image stand on the road in the first image.",
86
+ help="Instruction for image editing."
87
+ )
88
+ # Argument for the output image path
89
+ parser.add_argument(
90
+ "--output_path",
91
+ type=str,
92
+ default="example_input/edit_tests/edi_res.png",
93
+ help="Path to save the output image."
94
+ )
95
+
96
+ args = parser.parse_args()
97
+ return args
98
+
99
+ ARGS = parse_args()
100
+ vlm_path = ARGS.vlm_path
101
+ edit_lora_path = ARGS.edit_lora_path
102
+ base_model = ARGS.base_model_path
103
+ pipe = DreamOmni2Pipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
104
+ pipe.to(device)
105
+
106
+ pipe.load_lora_weights(
107
+ edit_lora_path,
108
+ adapter_name="edit"
109
+ )
110
+ pipe.set_adapters(["edit"], adapter_weights=[1])
111
+
112
+
113
+ vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
114
+ vlm_path, torch_dtype="bfloat16", device_map="cuda"
115
+ )
116
+ processor = AutoProcessor.from_pretrained(vlm_path)
117
+
118
+ def infer_vlm(input_img_path,input_instruction,prefix):
119
+ tp=[]
120
+ for path in input_img_path:
121
+ tp.append({"type": "image", "image": path})
122
+ tp.append({"type": "text", "text": input_instruction+prefix})
123
+ messages = [
124
+ {
125
+ "role": "user",
126
+ "content": tp,
127
+ }
128
+ ]
129
+
130
+ # Preparation for inference
131
+ text = processor.apply_chat_template(
132
+ messages, tokenize=False, add_generation_prompt=True
133
+ )
134
+ image_inputs, video_inputs = process_vision_info(messages)
135
+ inputs = processor(
136
+ text=[text],
137
+ images=image_inputs,
138
+ videos=video_inputs,
139
+ padding=True,
140
+ return_tensors="pt",
141
+ )
142
+ inputs = inputs.to("cuda")
143
+
144
+ # Inference
145
+ generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096)
146
+ generated_ids_trimmed = [
147
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
148
+ ]
149
+ output_text = processor.batch_decode(
150
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
151
+ )
152
+ return output_text[0]
153
+
154
+ def infer(source_imgs,prompt):
155
+ image = pipe(
156
+ images=source_imgs,
157
+ height=source_imgs[0].height,
158
+ width=source_imgs[0].width,
159
+ prompt=prompt,
160
+ num_inference_steps=30,
161
+ guidance_scale=3.5,
162
+ ).images[0]
163
+ return image
164
+
165
+
166
+ input_img_path=ARGS.input_img_path
167
+ input_instruction=ARGS.input_instruction
168
+
169
+ prefix=" It is editing task."
170
+ source_imgs = []
171
+ for path in input_img_path:
172
+ img = load_image(path)
173
+ # source_imgs.append(img)
174
+ source_imgs.append(resizeinput(img))
175
+
176
+ prompt=infer_vlm(input_img_path,input_instruction,prefix)
177
+ prompt = extract_gen_content(prompt)
178
+ image=infer(source_imgs,prompt)
179
+ output_path = ARGS.output_path
180
+ image.save(output_path)
inference_gen.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ try:
3
+ import torch_npu
4
+ from torch_npu.contrib import transfer_to_npu
5
+ import importlib
6
+ import transformers.utils
7
+ import transformers.models
8
+ origin_utils = transformers.utils
9
+ origin_models = transformers.models
10
+ import flash_attn
11
+ flash_attn.hack_transformers_flash_attn_2_available_check()
12
+ importlib.reload(transformers.utils)
13
+ importlib.reload(transformers.models)
14
+ origin_func = torch.nn.functional.interpolate
15
+ def new_func(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False):
16
+ if mode == "bilinear":
17
+ dtype = input.dtype
18
+ res = origin_func(input.to(torch.bfloat16), size, scale_factor, mode, align_corners, recompute_scale_factor, antialias)
19
+ return res.to(dtype)
20
+ else:
21
+ return origin_func(input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias)
22
+ torch.nn.functional.interpolate = new_func
23
+ from utils import patch_npu_record_stream
24
+ from utils import patch_npu_diffusers_get_1d_rotary_pos_embed
25
+ patch_npu_record_stream()
26
+ patch_npu_diffusers_get_1d_rotary_pos_embed()
27
+ USE_NPU = True
28
+ except:
29
+ USE_NPU = False
30
+ from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
31
+ from diffusers.utils import load_image
32
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
33
+ # from qwen_vl_utils import process_vision_info
34
+ from utils.vprocess import process_vision_info, resizeinput
35
+ import os
36
+ import argparse
37
+ from tqdm import tqdm
38
+ import json
39
+ from PIL import Image
40
+ import re
41
+ import argparse
42
+
43
+ if USE_NPU:
44
+ device = "npu"
45
+ else:
46
+ device = "cuda"
47
+
48
+ def extract_gen_content(text):
49
+ text = text[6:-7]
50
+
51
+ return text
52
+
53
+ def parse_args():
54
+ """Parses command-line arguments for model paths and server configuration."""
55
+ parser = argparse.ArgumentParser()
56
+ parser.add_argument(
57
+ "--vlm_path",
58
+ type=str,
59
+ default="./models/vlm-model",
60
+ help="Path to the VLM model directory."
61
+ )
62
+ parser.add_argument(
63
+ "--gen_lora_path",
64
+ type=str,
65
+ default="./models/gen_lora",
66
+ help="Path to the FLUX.1-Kontext generation LoRA weights directory."
67
+ )
68
+ parser.add_argument(
69
+ "--base_model_path",
70
+ type=str,
71
+ default="black-forest-labs/FLUX.1-Kontext-dev",
72
+ help="Path to the FLUX.1-Kontext editing."
73
+ )
74
+ parser.add_argument(
75
+ "--input_img_path",
76
+ type=str,
77
+ nargs='+', # Accept one or more input paths
78
+ default=["example_input/gen_tests/img1.jpg","example_input/gen_tests/img2.jpg"],
79
+ help="List of input image paths (e.g., src and ref images)."
80
+ )
81
+ # Argument for the input instruction
82
+ parser.add_argument(
83
+ "--input_instruction",
84
+ type=str,
85
+ default="In the scene, the character from the first image stands on the left, and the character from the second image stands on the right. They are shaking hands against the backdrop of a spaceship interior.",
86
+ help="Instruction for image generation."
87
+ )
88
+ parser.add_argument(
89
+ "--height",
90
+ type=int,
91
+ default=1024,
92
+ help="The height of output image."
93
+ )
94
+ parser.add_argument(
95
+ "--width",
96
+ type=int,
97
+ default=1024,
98
+ help="The width of output image."
99
+ )
100
+ # Argument for the output image path
101
+ parser.add_argument(
102
+ "--output_path",
103
+ type=str,
104
+ default="example_input/gen_tests/gen_res.png",
105
+ help="Path to save the output image."
106
+ )
107
+
108
+ args = parser.parse_args()
109
+ return args
110
+
111
+ ARGS = parse_args()
112
+ vlm_path = ARGS.vlm_path
113
+ gen_lora_path = ARGS.gen_lora_path
114
+ base_model = ARGS.base_model_path
115
+ pipe = DreamOmni2Pipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
116
+ pipe.to(device)
117
+
118
+ pipe.load_lora_weights(
119
+ gen_lora_path,
120
+ adapter_name="generation"
121
+ )
122
+ pipe.set_adapters(["generation"], adapter_weights=[1])
123
+
124
+
125
+ vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
126
+ vlm_path, torch_dtype="bfloat16", device_map="cuda"
127
+ )
128
+ processor = AutoProcessor.from_pretrained(vlm_path)
129
+
130
+ def infer_vlm(input_img_path,input_instruction,prefix):
131
+ tp=[]
132
+ for path in input_img_path:
133
+ tp.append({"type": "image", "image": path})
134
+ tp.append({"type": "text", "text": input_instruction+prefix})
135
+ messages = [
136
+ {
137
+ "role": "user",
138
+ "content": tp,
139
+ }
140
+ ]
141
+
142
+ # Preparation for inference
143
+ text = processor.apply_chat_template(
144
+ messages, tokenize=False, add_generation_prompt=True
145
+ )
146
+ image_inputs, video_inputs = process_vision_info(messages)
147
+ inputs = processor(
148
+ text=[text],
149
+ images=image_inputs,
150
+ videos=video_inputs,
151
+ padding=True,
152
+ return_tensors="pt",
153
+ )
154
+ inputs = inputs.to("cuda")
155
+
156
+ # Inference
157
+ generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096)
158
+ generated_ids_trimmed = [
159
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
160
+ ]
161
+ output_text = processor.batch_decode(
162
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
163
+ )
164
+ return output_text[0]
165
+
166
+ def infer(source_imgs,prompt,height=1024,width=1024):
167
+ image = pipe(
168
+ images=source_imgs,
169
+ height=height,
170
+ width=width,
171
+ prompt=prompt,
172
+ num_inference_steps=30,
173
+ guidance_scale=3.5,
174
+ ).images[0]
175
+ return image
176
+
177
+
178
+ input_img_path=ARGS.input_img_path
179
+ input_instruction=ARGS.input_instruction
180
+
181
+ prefix=" It is generation task."
182
+ source_imgs = []
183
+ for path in input_img_path:
184
+ img = load_image(path)
185
+ # source_imgs.append(img)
186
+ source_imgs.append(resizeinput(img))
187
+
188
+ prompt=infer_vlm(input_img_path,input_instruction,prefix)
189
+ prompt = extract_gen_content(prompt)
190
+ image=infer(source_imgs,prompt,height=ARGS.height,width=ARGS.width)
191
+ output_path = ARGS.output_path
192
+ image.save(output_path)
my_datasets/.gitkeep ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import json
4
+ import gc
5
+ import functools
6
+ import contextlib
7
+ from typing import Dict, Union, Optional, Type, Set
8
+
9
+ import torch
10
+ from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
11
+ from torch.distributed.fsdp import (
12
+ StateDictType,
13
+ FullOptimStateDictConfig,
14
+ FullStateDictConfig,
15
+ )
16
+ import torch.distributed.checkpoint as torch_dcp
17
+ import torch.distributed.checkpoint.state_dict
18
+ from torch.distributed.fsdp.api import (
19
+ ShardingStrategy,
20
+ BackwardPrefetch,
21
+ MixedPrecision,
22
+ )
23
+ import accelerate
24
+ import safetensors
25
+ import diffusers
26
+ import transformers
27
+ from huggingface_hub.serialization import split_torch_state_dict_into_shards
28
+ import os, re, json
29
+ from typing import Union
30
+ import torch
31
+ import safetensors.torch
32
+ import accelerate
33
+ # from .ema_utils import EMAModel
34
+
35
+
36
+ def upcast_trainable_param_to_fp32_(fsdp_model):
37
+ for m in FSDP.fsdp_modules(fsdp_model):
38
+ if m._has_params:
39
+ param = m._flat_param
40
+ if (
41
+ param.dtype != torch.float32
42
+ and param.device != torch.device("meta")
43
+ and param.requires_grad
44
+ ):
45
+ param.data = param.data.to(torch.float32)
46
+ m._handle._orig_param_dtype = torch.float32
47
+
48
+
49
+ def get_module_to_ignore_mixed_precision():
50
+ try:
51
+ from apex.normalization import FusedLayerNorm
52
+
53
+ return [
54
+ torch.nn.GroupNorm,
55
+ torch.nn.modules.batchnorm._BatchNorm,
56
+ torch.nn.LayerNorm,
57
+ FusedLayerNorm,
58
+ ]
59
+ except:
60
+ return [
61
+ torch.nn.GroupNorm,
62
+ torch.nn.modules.batchnorm._BatchNorm,
63
+ torch.nn.LayerNorm,
64
+ ]
65
+
66
+
67
+ def is_fsdp_model(model):
68
+ return len(FSDP.fsdp_modules(model)) > 0
69
+
70
+
71
+ def size_based_auto_wrap_policy(
72
+ module: torch.nn.Module,
73
+ recurse: bool,
74
+ nonwrapped_numel: int,
75
+ # Additional custom arguments
76
+ min_num_params: int = int(1e8),
77
+ force_leaf_modules: Optional[Set[Type[torch.nn.Module]]] = None,
78
+ exclude_wrap_modules: Optional[Set[Type[torch.nn.Module]]] = None,
79
+ ) -> bool:
80
+ """
81
+ A size-based auto wrap policy.
82
+
83
+ Args:
84
+ module (nn.Module): Current module being considered.
85
+ recurse (bool): If ``False``, then this function must decide whether
86
+ ``module`` should be wrapped as an FSDP instance or not. If
87
+ ``True``, then the function is still recursing down the module
88
+ tree as a part of the DFS.
89
+ nonwrapped_numel (int): Parameter numel not yet wrapped.
90
+
91
+ min_num_params (int): Customizable policy input that controls the size
92
+ threshold over which a module is ready to be wrapped. This is in
93
+ units of numel.
94
+ force_leaf_modules (Set[Type[nn.Module]]): Set of module types to keep
95
+ as leaves, i.e. their children will never be wrapped.
96
+ exclude_wrap_modules (Set[Type[nn.Module]]): Set of module types to be
97
+ excluded in wrapping.
98
+
99
+ Returns:
100
+ Whether ``module`` should be wrapped.
101
+ """
102
+ force_leaf_modules = (
103
+ size_based_auto_wrap_policy.FORCE_LEAF_MODULES # type: ignore[attr-defined]
104
+ if force_leaf_modules is None
105
+ else force_leaf_modules
106
+ )
107
+ exclude_wrap_modules = (
108
+ size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES # type: ignore[attr-defined]
109
+ if exclude_wrap_modules is None
110
+ else exclude_wrap_modules
111
+ )
112
+
113
+ # Keep the argument `min_num_params` for BC for now, but it represents the
114
+ # minimum non-wrapped *numel* before triggering a wrapping
115
+ min_nonwrapped_numel = min_num_params
116
+ is_large = nonwrapped_numel >= min_nonwrapped_numel
117
+ STOP_FLAG_NAME = "__FSDP_STOP_WARP_FLAG_CUSTOM_POLICY_size_based_auto_wrap_policy"
118
+ if recurse:
119
+ # use MixedPrecision cause ALWAYS recurse
120
+ if isinstance(module, tuple(force_leaf_modules)):
121
+ for m in module.children():
122
+ m.apply(lambda m: setattr(m, STOP_FLAG_NAME, True))
123
+ return True
124
+ else:
125
+ if getattr(module, size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME, False):
126
+ return True
127
+ elif getattr(module, STOP_FLAG_NAME, False):
128
+ return False
129
+ else:
130
+ # If we are not recursing, determine if we should wrap.
131
+ return is_large and not isinstance(module, tuple(exclude_wrap_modules))
132
+
133
+
134
+ # Set those defaults to the size_based_auto_wrap_policy function. Make them easy to be imported.
135
+ size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES = {torch.nn.ModuleList, torch.nn.ModuleDict} # type: ignore[attr-defined]
136
+ size_based_auto_wrap_policy.FORCE_LEAF_MODULES = {torch.nn.MultiheadAttention} # type: ignore[attr-defined]
137
+ size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME = (
138
+ "__FSDP_LEAF_ROOT_FLAG_CUSTOM_POLICY_size_based_auto_wrap_policy"
139
+ )
140
+
141
+
142
+ def mark_leaf_root_(module):
143
+ setattr(
144
+ module,
145
+ size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME,
146
+ True,
147
+ )
148
+
149
+
150
+ def make_model_fsdp(
151
+ model,
152
+ param_dtype,
153
+ device,
154
+ reduce_dtype=None,
155
+ buffer_dtype=None,
156
+ sync_module_states=True,
157
+ process_group=None,
158
+ sharding_strategy=ShardingStrategy.HYBRID_SHARD,
159
+ module_classes_to_ignore_mixed_precision=None,
160
+ ignored_states=None,
161
+ ignored_modules=None,
162
+ auto_wrap_policy=None,
163
+ part_size=1e6,
164
+ force_leaf_modules=None,
165
+ exclude_wrap_modules=None,
166
+ use_orig_params=False
167
+ ):
168
+ if module_classes_to_ignore_mixed_precision is None:
169
+ module_classes_to_ignore_mixed_precision = (
170
+ get_module_to_ignore_mixed_precision()
171
+ )
172
+ if auto_wrap_policy is not None:
173
+ auto_wrap_policy = auto_wrap_policy
174
+ elif sharding_strategy == ShardingStrategy.NO_SHARD:
175
+ auto_wrap_policy = None
176
+ else:
177
+ auto_wrap_policy = functools.partial(
178
+ size_based_auto_wrap_policy,
179
+ min_num_params=part_size,
180
+ force_leaf_modules=force_leaf_modules,
181
+ exclude_wrap_modules=exclude_wrap_modules,
182
+ )
183
+
184
+ model = FSDP(
185
+ model,
186
+ sharding_strategy=sharding_strategy,
187
+ process_group=process_group,
188
+ forward_prefetch=True,
189
+ backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
190
+ limit_all_gathers=True,
191
+ use_orig_params=use_orig_params,
192
+ sync_module_states=sync_module_states,
193
+ mixed_precision=MixedPrecision(
194
+ param_dtype=param_dtype,
195
+ reduce_dtype=reduce_dtype or torch.float32,
196
+ buffer_dtype=buffer_dtype or torch.float32,
197
+ keep_low_precision_grads=False,
198
+ cast_forward_inputs=False,
199
+ cast_root_forward_inputs=True,
200
+ _module_classes_to_ignore=module_classes_to_ignore_mixed_precision,
201
+ ),
202
+ auto_wrap_policy=auto_wrap_policy,
203
+ ignored_states=ignored_states,
204
+ ignored_modules=ignored_modules,
205
+ device_id=device,
206
+ )
207
+ torch.cuda.empty_cache()
208
+ gc.collect()
209
+ return model
210
+
211
+
212
+ def save_fsdp_lora(
213
+ model_to_save, # FSDP 包裹的模型
214
+ save_directory: Union[str, os.PathLike],
215
+ is_main_process: bool = True,
216
+ lora_regex: str = r"(?:lora)", # 根据自己命名习惯调
217
+ ):
218
+ """
219
+ 仅保存 LoRA 层的权重。适用于 FSDP 并与 safetensors 兼容。
220
+ """
221
+ # 1. 解包 FSDP,拿到裸模型
222
+ unwrapped_model = accelerate.utils.extract_model_from_parallel(model_to_save)
223
+
224
+ # 2. 创建保存目录
225
+ if is_main_process:
226
+ os.makedirs(save_directory, exist_ok=True)
227
+
228
+ # 3. 收集完整 state_dict(CPU 上)
229
+ state_dict = torch_dcp.state_dict.get_model_state_dict(
230
+ model_to_save,
231
+ options=torch_dcp.state_dict.StateDictOptions(
232
+ full_state_dict=True,
233
+ cpu_offload=True,
234
+ ignore_frozen_params=False,
235
+ ),
236
+ )
237
+
238
+ # 4. 过滤出 LoRA 参数
239
+ lora_pattern = re.compile(lora_regex)
240
+ lora_state_dict = {
241
+ k: v for k, v in state_dict.items() if lora_pattern.search(k) is not None
242
+ }
243
+
244
+ if not lora_state_dict:
245
+ raise ValueError(
246
+ "未找到匹配 LoRA 的参数。请检查 lora_regex 是否符合命名规则。"
247
+ )
248
+
249
+ # 5. 保存为单文件 *.safetensors
250
+ if is_main_process:
251
+ weight_file = os.path.join(save_directory, "adapter_model.safetensors")
252
+ safetensors.torch.save_file(
253
+ lora_state_dict, weight_file, metadata={"format": "pt", "type": "lora"}
254
+ )
255
+
256
+
257
+ def load_fsdp_model_(model_to_load: FSDP, save_directory: Union[str, os.PathLike]):
258
+ with FSDP.state_dict_type(
259
+ model_to_load,
260
+ state_dict_type=StateDictType.FULL_STATE_DICT,
261
+ state_dict_config=FullStateDictConfig(
262
+ rank0_only=False,
263
+ ),
264
+ ):
265
+ _model = model_to_load.from_pretrained(save_directory)
266
+ model_to_load.load_state_dict(_model.state_dict())
267
+
268
+
269
+ def save_fsdp_optimizer(
270
+ models: Dict,
271
+ optimizer_to_save: torch.optim.Optimizer,
272
+ save_directory: Union[str, os.PathLike],
273
+ is_main_process: bool = True,
274
+ ):
275
+ _fsdp_state_dict_config = dict(
276
+ state_dict_type=StateDictType.FULL_STATE_DICT,
277
+ optim_state_dict_config=FullOptimStateDictConfig(
278
+ offload_to_cpu=True,
279
+ rank0_only=True,
280
+ ),
281
+ )
282
+ mgrs = list()
283
+ for m in models.values():
284
+ if len(FSDP.fsdp_modules(m)) > 0:
285
+ mgrs.append(FSDP.state_dict_type(m, **_fsdp_state_dict_config))
286
+
287
+ with contextlib.ExitStack() as stack:
288
+ for mgr in mgrs:
289
+ stack.enter_context(mgr)
290
+ optim_state_dict = FSDP.optim_state_dict(
291
+ torch.nn.ModuleDict(models),
292
+ optimizer_to_save,
293
+ )
294
+ if is_main_process:
295
+ torch.save(
296
+ optim_state_dict, os.path.join(save_directory, "optim_states.pth")
297
+ )
298
+
299
+
300
+ def load_fsdp_optimizer_(
301
+ models: Dict,
302
+ optimizer_to_load: torch.optim.Optimizer,
303
+ save_directory: Union[str, os.PathLike],
304
+ ):
305
+ _fsdp_state_dict_config = dict(
306
+ state_dict_type=StateDictType.FULL_STATE_DICT,
307
+ optim_state_dict_config=FullOptimStateDictConfig(
308
+ rank0_only=False,
309
+ ),
310
+ )
311
+ mgrs = list()
312
+ for m in models.values():
313
+ if len(FSDP.fsdp_modules(m)) > 0:
314
+ mgrs.append(FSDP.state_dict_type(m, **_fsdp_state_dict_config))
315
+
316
+ with contextlib.ExitStack() as stack:
317
+ for mgr in mgrs:
318
+ stack.enter_context(mgr)
319
+ optimizer_path = os.path.join(save_directory, "optim_states.pth")
320
+ assert os.path.isfile(optimizer_path)
321
+ optim_state_dict = torch.load(optimizer_path)
322
+ optim_state_dict = FSDP.optim_state_dict_to_load(
323
+ torch.nn.ModuleDict(models),
324
+ optimizer_to_load,
325
+ optim_state_dict,
326
+ )
327
+ optimizer_to_load.load_state_dict(optim_state_dict)
script.sh DELETED
@@ -1,12 +0,0 @@
1
- CUDA_VISIBLE_DEVICES=3 GRADIO_TEMP_DIR=gradio_tmp python web_edit.py \
2
- --vlm_path /gpfs/bhpeng/generation/do2/vlm-model \
3
- --edit_lora_path /gpfs/bhpeng/generation/do2/edit_lora \
4
- --server_name "0.0.0.0" \
5
- --server_port 7869
6
-
7
-
8
- CUDA_VISIBLE_DEVICES=1 python web_generate.py \
9
- --vlm_path /gpfs/bhpeng/generation/do2/vlm-model \
10
- --gen_lora_path /gpfs/bhpeng/generation/do2/gen_lora \
11
- --server_name "0.0.0.0" \
12
- --server_port 7861
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/fsdp_utils.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import json
4
+ import gc
5
+ import functools
6
+ import contextlib
7
+ from typing import Dict, Union, Optional, Type, Set
8
+
9
+ import torch
10
+ from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
11
+ from torch.distributed.fsdp import (
12
+ StateDictType,
13
+ FullOptimStateDictConfig,
14
+ FullStateDictConfig,
15
+ )
16
+ import torch.distributed.checkpoint as torch_dcp
17
+ import torch.distributed.checkpoint.state_dict
18
+ from torch.distributed.fsdp.api import (
19
+ ShardingStrategy,
20
+ BackwardPrefetch,
21
+ MixedPrecision,
22
+ )
23
+ import accelerate
24
+ import safetensors
25
+ import diffusers
26
+ import transformers
27
+ from huggingface_hub.serialization import split_torch_state_dict_into_shards
28
+ import os, re, json
29
+ from typing import Union
30
+ import torch
31
+ import safetensors.torch
32
+ import accelerate
33
+ # from .ema_utils import EMAModel
34
+
35
+
36
+ def upcast_trainable_param_to_fp32_(fsdp_model):
37
+ for m in FSDP.fsdp_modules(fsdp_model):
38
+ if m._has_params:
39
+ param = m._flat_param
40
+ if (
41
+ param.dtype != torch.float32
42
+ and param.device != torch.device("meta")
43
+ and param.requires_grad
44
+ ):
45
+ param.data = param.data.to(torch.float32)
46
+ m._handle._orig_param_dtype = torch.float32
47
+
48
+
49
+ def get_module_to_ignore_mixed_precision():
50
+ try:
51
+ from apex.normalization import FusedLayerNorm
52
+
53
+ return [
54
+ torch.nn.GroupNorm,
55
+ torch.nn.modules.batchnorm._BatchNorm,
56
+ torch.nn.LayerNorm,
57
+ FusedLayerNorm,
58
+ ]
59
+ except:
60
+ return [
61
+ torch.nn.GroupNorm,
62
+ torch.nn.modules.batchnorm._BatchNorm,
63
+ torch.nn.LayerNorm,
64
+ ]
65
+
66
+
67
+ def is_fsdp_model(model):
68
+ return len(FSDP.fsdp_modules(model)) > 0
69
+
70
+
71
+ def size_based_auto_wrap_policy(
72
+ module: torch.nn.Module,
73
+ recurse: bool,
74
+ nonwrapped_numel: int,
75
+ # Additional custom arguments
76
+ min_num_params: int = int(1e8),
77
+ force_leaf_modules: Optional[Set[Type[torch.nn.Module]]] = None,
78
+ exclude_wrap_modules: Optional[Set[Type[torch.nn.Module]]] = None,
79
+ ) -> bool:
80
+ """
81
+ A size-based auto wrap policy.
82
+
83
+ Args:
84
+ module (nn.Module): Current module being considered.
85
+ recurse (bool): If ``False``, then this function must decide whether
86
+ ``module`` should be wrapped as an FSDP instance or not. If
87
+ ``True``, then the function is still recursing down the module
88
+ tree as a part of the DFS.
89
+ nonwrapped_numel (int): Parameter numel not yet wrapped.
90
+
91
+ min_num_params (int): Customizable policy input that controls the size
92
+ threshold over which a module is ready to be wrapped. This is in
93
+ units of numel.
94
+ force_leaf_modules (Set[Type[nn.Module]]): Set of module types to keep
95
+ as leaves, i.e. their children will never be wrapped.
96
+ exclude_wrap_modules (Set[Type[nn.Module]]): Set of module types to be
97
+ excluded in wrapping.
98
+
99
+ Returns:
100
+ Whether ``module`` should be wrapped.
101
+ """
102
+ force_leaf_modules = (
103
+ size_based_auto_wrap_policy.FORCE_LEAF_MODULES # type: ignore[attr-defined]
104
+ if force_leaf_modules is None
105
+ else force_leaf_modules
106
+ )
107
+ exclude_wrap_modules = (
108
+ size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES # type: ignore[attr-defined]
109
+ if exclude_wrap_modules is None
110
+ else exclude_wrap_modules
111
+ )
112
+
113
+ # Keep the argument `min_num_params` for BC for now, but it represents the
114
+ # minimum non-wrapped *numel* before triggering a wrapping
115
+ min_nonwrapped_numel = min_num_params
116
+ is_large = nonwrapped_numel >= min_nonwrapped_numel
117
+ STOP_FLAG_NAME = "__FSDP_STOP_WARP_FLAG_CUSTOM_POLICY_size_based_auto_wrap_policy"
118
+ if recurse:
119
+ # use MixedPrecision cause ALWAYS recurse
120
+ if isinstance(module, tuple(force_leaf_modules)):
121
+ for m in module.children():
122
+ m.apply(lambda m: setattr(m, STOP_FLAG_NAME, True))
123
+ return True
124
+ else:
125
+ if getattr(module, size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME, False):
126
+ return True
127
+ elif getattr(module, STOP_FLAG_NAME, False):
128
+ return False
129
+ else:
130
+ # If we are not recursing, determine if we should wrap.
131
+ return is_large and not isinstance(module, tuple(exclude_wrap_modules))
132
+
133
+
134
+ # Set those defaults to the size_based_auto_wrap_policy function. Make them easy to be imported.
135
+ size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES = {torch.nn.ModuleList, torch.nn.ModuleDict} # type: ignore[attr-defined]
136
+ size_based_auto_wrap_policy.FORCE_LEAF_MODULES = {torch.nn.MultiheadAttention} # type: ignore[attr-defined]
137
+ size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME = (
138
+ "__FSDP_LEAF_ROOT_FLAG_CUSTOM_POLICY_size_based_auto_wrap_policy"
139
+ )
140
+
141
+
142
+ def mark_leaf_root_(module):
143
+ setattr(
144
+ module,
145
+ size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME,
146
+ True,
147
+ )
148
+
149
+
150
+ def make_model_fsdp(
151
+ model,
152
+ param_dtype,
153
+ device,
154
+ reduce_dtype=None,
155
+ buffer_dtype=None,
156
+ sync_module_states=True,
157
+ process_group=None,
158
+ sharding_strategy=ShardingStrategy.HYBRID_SHARD,
159
+ module_classes_to_ignore_mixed_precision=None,
160
+ ignored_states=None,
161
+ ignored_modules=None,
162
+ auto_wrap_policy=None,
163
+ part_size=1e6,
164
+ force_leaf_modules=None,
165
+ exclude_wrap_modules=None,
166
+ use_orig_params=False
167
+ ):
168
+ if module_classes_to_ignore_mixed_precision is None:
169
+ module_classes_to_ignore_mixed_precision = (
170
+ get_module_to_ignore_mixed_precision()
171
+ )
172
+ if auto_wrap_policy is not None:
173
+ auto_wrap_policy = auto_wrap_policy
174
+ elif sharding_strategy == ShardingStrategy.NO_SHARD:
175
+ auto_wrap_policy = None
176
+ else:
177
+ auto_wrap_policy = functools.partial(
178
+ size_based_auto_wrap_policy,
179
+ min_num_params=part_size,
180
+ force_leaf_modules=force_leaf_modules,
181
+ exclude_wrap_modules=exclude_wrap_modules,
182
+ )
183
+
184
+ model = FSDP(
185
+ model,
186
+ sharding_strategy=sharding_strategy,
187
+ process_group=process_group,
188
+ forward_prefetch=True,
189
+ backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
190
+ limit_all_gathers=True,
191
+ use_orig_params=use_orig_params,
192
+ sync_module_states=sync_module_states,
193
+ mixed_precision=MixedPrecision(
194
+ param_dtype=param_dtype,
195
+ reduce_dtype=reduce_dtype or torch.float32,
196
+ buffer_dtype=buffer_dtype or torch.float32,
197
+ keep_low_precision_grads=False,
198
+ cast_forward_inputs=False,
199
+ cast_root_forward_inputs=True,
200
+ _module_classes_to_ignore=module_classes_to_ignore_mixed_precision,
201
+ ),
202
+ auto_wrap_policy=auto_wrap_policy,
203
+ ignored_states=ignored_states,
204
+ ignored_modules=ignored_modules,
205
+ device_id=device,
206
+ )
207
+ torch.cuda.empty_cache()
208
+ gc.collect()
209
+ return model
210
+
211
+
212
+ def save_fsdp_lora(
213
+ model_to_save, # FSDP 包裹的模型
214
+ save_directory: Union[str, os.PathLike],
215
+ is_main_process: bool = True,
216
+ lora_regex: str = r"(?:lora)", # 根据自己命名习惯调
217
+ ):
218
+ """
219
+ 仅保存 LoRA 层的权重。适用于 FSDP 并与 safetensors 兼容。
220
+ """
221
+ # 1. 解包 FSDP,拿到裸模型
222
+ unwrapped_model = accelerate.utils.extract_model_from_parallel(model_to_save)
223
+
224
+ # 2. 创建保存目录
225
+ if is_main_process:
226
+ os.makedirs(save_directory, exist_ok=True)
227
+
228
+ # 3. 收集完整 state_dict(CPU 上)
229
+ state_dict = torch_dcp.state_dict.get_model_state_dict(
230
+ model_to_save,
231
+ options=torch_dcp.state_dict.StateDictOptions(
232
+ full_state_dict=True,
233
+ cpu_offload=True,
234
+ ignore_frozen_params=False,
235
+ ),
236
+ )
237
+
238
+ # 4. 过滤出 LoRA 参数
239
+ lora_pattern = re.compile(lora_regex)
240
+ lora_state_dict = {
241
+ k: v for k, v in state_dict.items() if lora_pattern.search(k) is not None
242
+ }
243
+
244
+ if not lora_state_dict:
245
+ raise ValueError(
246
+ "未找到匹配 LoRA 的参数。请检查 lora_regex 是否符合命名规则。"
247
+ )
248
+
249
+ # 5. 保存为单文件 *.safetensors
250
+ if is_main_process:
251
+ weight_file = os.path.join(save_directory, "adapter_model.safetensors")
252
+ safetensors.torch.save_file(
253
+ lora_state_dict, weight_file, metadata={"format": "pt", "type": "lora"}
254
+ )
255
+
256
+
257
+ def load_fsdp_model_(model_to_load: FSDP, save_directory: Union[str, os.PathLike]):
258
+ with FSDP.state_dict_type(
259
+ model_to_load,
260
+ state_dict_type=StateDictType.FULL_STATE_DICT,
261
+ state_dict_config=FullStateDictConfig(
262
+ rank0_only=False,
263
+ ),
264
+ ):
265
+ _model = model_to_load.from_pretrained(save_directory)
266
+ model_to_load.load_state_dict(_model.state_dict())
267
+
268
+
269
+ def save_fsdp_optimizer(
270
+ models: Dict,
271
+ optimizer_to_save: torch.optim.Optimizer,
272
+ save_directory: Union[str, os.PathLike],
273
+ is_main_process: bool = True,
274
+ ):
275
+ _fsdp_state_dict_config = dict(
276
+ state_dict_type=StateDictType.FULL_STATE_DICT,
277
+ optim_state_dict_config=FullOptimStateDictConfig(
278
+ offload_to_cpu=True,
279
+ rank0_only=True,
280
+ ),
281
+ )
282
+ mgrs = list()
283
+ for m in models.values():
284
+ if len(FSDP.fsdp_modules(m)) > 0:
285
+ mgrs.append(FSDP.state_dict_type(m, **_fsdp_state_dict_config))
286
+
287
+ with contextlib.ExitStack() as stack:
288
+ for mgr in mgrs:
289
+ stack.enter_context(mgr)
290
+ optim_state_dict = FSDP.optim_state_dict(
291
+ torch.nn.ModuleDict(models),
292
+ optimizer_to_save,
293
+ )
294
+ if is_main_process:
295
+ torch.save(
296
+ optim_state_dict, os.path.join(save_directory, "optim_states.pth")
297
+ )
298
+
299
+
300
+ def load_fsdp_optimizer_(
301
+ models: Dict,
302
+ optimizer_to_load: torch.optim.Optimizer,
303
+ save_directory: Union[str, os.PathLike],
304
+ ):
305
+ _fsdp_state_dict_config = dict(
306
+ state_dict_type=StateDictType.FULL_STATE_DICT,
307
+ optim_state_dict_config=FullOptimStateDictConfig(
308
+ rank0_only=False,
309
+ ),
310
+ )
311
+ mgrs = list()
312
+ for m in models.values():
313
+ if len(FSDP.fsdp_modules(m)) > 0:
314
+ mgrs.append(FSDP.state_dict_type(m, **_fsdp_state_dict_config))
315
+
316
+ with contextlib.ExitStack() as stack:
317
+ for mgr in mgrs:
318
+ stack.enter_context(mgr)
319
+ optimizer_path = os.path.join(save_directory, "optim_states.pth")
320
+ assert os.path.isfile(optimizer_path)
321
+ optim_state_dict = torch.load(optimizer_path)
322
+ optim_state_dict = FSDP.optim_state_dict_to_load(
323
+ torch.nn.ModuleDict(models),
324
+ optimizer_to_load,
325
+ optim_state_dict,
326
+ )
327
+ optimizer_to_load.load_state_dict(optim_state_dict)
utils/infer_utils.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ def tokenize_prompt(tokenizer, prompt, max_sequence_length):
4
+ text_inputs = tokenizer(
5
+ prompt,
6
+ padding="max_length",
7
+ max_length=max_sequence_length,
8
+ truncation=True,
9
+ return_length=False,
10
+ return_overflowing_tokens=False,
11
+ return_tensors="pt",
12
+ )
13
+ text_input_ids = text_inputs.input_ids
14
+ return text_input_ids
15
+
16
+ def _encode_prompt_with_t5(
17
+ text_encoder,
18
+ tokenizer,
19
+ max_sequence_length=512,
20
+ prompt=None,
21
+ num_images_per_prompt=1,
22
+ device=None,
23
+ text_input_ids=None,
24
+ ):
25
+ prompt = [prompt] if isinstance(prompt, str) else prompt
26
+ batch_size = len(prompt)
27
+
28
+ if tokenizer is not None:
29
+ text_inputs = tokenizer(
30
+ prompt,
31
+ padding="max_length",
32
+ max_length=max_sequence_length,
33
+ truncation=True,
34
+ return_length=False,
35
+ return_overflowing_tokens=False,
36
+ return_tensors="pt",
37
+ )
38
+ text_input_ids = text_inputs.input_ids
39
+ else:
40
+ if text_input_ids is None:
41
+ raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
42
+
43
+ prompt_embeds = text_encoder(text_input_ids.to(device))[0]
44
+
45
+ if hasattr(text_encoder, "module"):
46
+ dtype = text_encoder.module.dtype
47
+ else:
48
+ dtype = text_encoder.dtype
49
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
50
+
51
+ _, seq_len, _ = prompt_embeds.shape
52
+
53
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
54
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
55
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
56
+
57
+ return prompt_embeds
58
+
59
+
60
+ def _encode_prompt_with_clip(
61
+ text_encoder,
62
+ tokenizer,
63
+ prompt: str,
64
+ device=None,
65
+ text_input_ids=None,
66
+ num_images_per_prompt: int = 1,
67
+ ):
68
+ prompt = [prompt] if isinstance(prompt, str) else prompt
69
+ batch_size = len(prompt)
70
+
71
+ if tokenizer is not None:
72
+ text_inputs = tokenizer(
73
+ prompt,
74
+ padding="max_length",
75
+ max_length=77,
76
+ truncation=True,
77
+ return_overflowing_tokens=False,
78
+ return_length=False,
79
+ return_tensors="pt",
80
+ )
81
+
82
+ text_input_ids = text_inputs.input_ids
83
+ else:
84
+ if text_input_ids is None:
85
+ raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
86
+
87
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)
88
+
89
+ if hasattr(text_encoder, "module"):
90
+ dtype = text_encoder.module.dtype
91
+ else:
92
+ dtype = text_encoder.dtype
93
+ # Use pooled output of CLIPTextModel
94
+ prompt_embeds = prompt_embeds.pooler_output
95
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
96
+
97
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
98
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
99
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
100
+
101
+ return prompt_embeds
102
+
103
+
104
+ def encode_prompt(
105
+ text_encoders,
106
+ tokenizers,
107
+ prompt: str,
108
+ max_sequence_length,
109
+ device=None,
110
+ num_images_per_prompt: int = 1,
111
+ text_input_ids_list=None,
112
+ ):
113
+ prompt = [prompt] if isinstance(prompt, str) else prompt
114
+
115
+ if hasattr(text_encoders[0], "module"):
116
+ dtype = text_encoders[0].module.dtype
117
+ else:
118
+ dtype = text_encoders[0].dtype
119
+
120
+ pooled_prompt_embeds = _encode_prompt_with_clip(
121
+ text_encoder=text_encoders[0],
122
+ tokenizer=tokenizers[0],
123
+ prompt=prompt,
124
+ device=device if device is not None else text_encoders[0].device,
125
+ num_images_per_prompt=num_images_per_prompt,
126
+ text_input_ids=text_input_ids_list[0] if text_input_ids_list else None,
127
+ )
128
+
129
+ prompt_embeds = _encode_prompt_with_t5(
130
+ text_encoder=text_encoders[1],
131
+ tokenizer=tokenizers[1],
132
+ max_sequence_length=max_sequence_length,
133
+ prompt=prompt,
134
+ num_images_per_prompt=num_images_per_prompt,
135
+ device=device if device is not None else text_encoders[1].device,
136
+ text_input_ids=text_input_ids_list[1] if text_input_ids_list else None,
137
+ )
138
+
139
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
140
+
141
+ return prompt_embeds, pooled_prompt_embeds, text_ids
142
+
143
+
144
+ def compute_text_embeddings( args, accelerator, prompt, text_encoders, tokenizers):
145
+ with torch.no_grad():
146
+ prompt_embeds, pooled_prompt_embeds, text_ids = encode_prompt(
147
+ text_encoders, tokenizers, prompt, args.max_sequence_length
148
+ )
149
+ prompt_embeds = prompt_embeds.to(accelerator.device)
150
+ pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
151
+ text_ids = text_ids.to(accelerator.device)
152
+ return prompt_embeds, pooled_prompt_embeds, text_ids
153
+
154
+ def get_sigmas(noise_scheduler_copy,accelerator, timesteps, n_dim=4, dtype=torch.float32):
155
+ sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
156
+ schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
157
+ timesteps = timesteps.to(accelerator.device)
158
+ step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
159
+
160
+ sigma = sigmas[step_indices].flatten()
161
+ while len(sigma.shape) < n_dim:
162
+ sigma = sigma.unsqueeze(-1)
163
+ return sigma
utils/init_utils.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import CLIPTokenizer, PretrainedConfig, T5TokenizerFast
2
+ import logging
3
+ def load_text_encoders(args, class_one, class_two):
4
+ text_encoder_one = class_one.from_pretrained(
5
+ args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
6
+ )
7
+ text_encoder_two = class_two.from_pretrained(
8
+ args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
9
+ )
10
+ return text_encoder_one, text_encoder_two
11
+
12
+ def import_model_class_from_model_name_or_path(
13
+ pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
14
+ ):
15
+ text_encoder_config = PretrainedConfig.from_pretrained(
16
+ pretrained_model_name_or_path, subfolder=subfolder, revision=revision
17
+ )
18
+ model_class = text_encoder_config.architectures[0]
19
+ if model_class == "CLIPTextModel":
20
+ from transformers import CLIPTextModel
21
+
22
+ return CLIPTextModel
23
+ elif model_class == "T5EncoderModel":
24
+ from transformers import T5EncoderModel
25
+
26
+ return T5EncoderModel
27
+ else:
28
+ raise ValueError(f"{model_class} is not supported.")
29
+
30
+ def create_logger(logging_dir,accelerator):
31
+ """
32
+ Create a logger that writes to a log file and stdout.
33
+ """
34
+ if accelerator.is_main_process: # real logger
35
+ logging.basicConfig(
36
+ level=logging.INFO,
37
+ format="[\033[34m%(asctime)s\033[0m] %(message)s",
38
+ datefmt="%Y-%m-%d %H:%M:%S",
39
+ handlers=[
40
+ logging.StreamHandler(),
41
+ logging.FileHandler(f"{logging_dir}/log.txt"),
42
+ ],
43
+ )
44
+ logger = logging.getLogger(__name__)
45
+ else: # dummy logger (does nothing)
46
+ logger = logging.getLogger(__name__)
47
+ logger.addHandler(logging.NullHandler())
48
+ return logger
utils/parser_config.py ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ def parse_args(input_args=None):
5
+ parser = argparse.ArgumentParser(description="Simple example of a training script.")
6
+ parser.add_argument(
7
+ "--pretrained_model_name_or_path",
8
+ type=str,
9
+ default=None,
10
+ required=True,
11
+ help="Path to pretrained model or model identifier from huggingface.co/models.",
12
+ )
13
+ parser.add_argument(
14
+ "--revision",
15
+ type=str,
16
+ default=None,
17
+ required=False,
18
+ help="Revision of pretrained model identifier from huggingface.co/models.",
19
+ )
20
+ parser.add_argument(
21
+ "--vae_encode_mode",
22
+ type=str,
23
+ default="mode",
24
+ choices=["sample", "mode"],
25
+ help="VAE encoding mode.",
26
+ )
27
+ parser.add_argument(
28
+ "--variant",
29
+ type=str,
30
+ default=None,
31
+ help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
32
+ )
33
+ parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
34
+ parser.add_argument(
35
+ "--max_sequence_length",
36
+ type=int,
37
+ default=512,
38
+ help="Maximum sequence length to use with with the T5 text encoder",
39
+ )
40
+ parser.add_argument(
41
+ "--rank",
42
+ type=int,
43
+ default=4,
44
+ help=("The dimension of the LoRA update matrices."),
45
+ )
46
+ parser.add_argument(
47
+ "--lora_alpha",
48
+ type=int,
49
+ default=4,
50
+ help="LoRA alpha to be used for additional scaling.",
51
+ )
52
+ parser.add_argument("--lora_dropout", type=float, default=0.0, help="Dropout probability for LoRA layers")
53
+ parser.add_argument(
54
+ "--output_dir",
55
+ type=str,
56
+ default="flux-dreambooth-lora",
57
+ help="The output directory where the model predictions and checkpoints will be written.",
58
+ )
59
+ parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
60
+ parser.add_argument(
61
+ "--resolution",
62
+ type=int,
63
+ default=512,
64
+ help=(
65
+ "The resolution for input images, all the images in the train/validation dataset will be resized to this"
66
+ " resolution"
67
+ ),
68
+ )
69
+ parser.add_argument(
70
+ "--aspect_ratio_buckets",
71
+ type=str,
72
+ default=None,
73
+ help=(
74
+ "Aspect ratio buckets to use for training. Define as a string of 'h1,w1;h2,w2;...'. "
75
+ "e.g. '1024,1024;768,1360;1360,768;880,1168;1168,880;1248,832;832,1248'"
76
+ "Images will be resized and cropped to fit the nearest bucket. If provided, --resolution is ignored."
77
+ ),
78
+ )
79
+ parser.add_argument(
80
+ "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
81
+ )
82
+ parser.add_argument(
83
+ "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
84
+ )
85
+ parser.add_argument("--num_train_epochs", type=int, default=1)
86
+ parser.add_argument(
87
+ "--max_train_steps",
88
+ type=int,
89
+ default=None,
90
+ help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
91
+ )
92
+ parser.add_argument(
93
+ "--checkpointing_steps",
94
+ type=int,
95
+ default=500,
96
+ help=(
97
+ "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
98
+ " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
99
+ " training using `--resume_from_checkpoint`."
100
+ ),
101
+ )
102
+ parser.add_argument(
103
+ "--checkpoints_total_limit",
104
+ type=int,
105
+ default=None,
106
+ help=("Max number of checkpoints to store."),
107
+ )
108
+ parser.add_argument(
109
+ "--resume_from_checkpoint",
110
+ type=str,
111
+ default=None,
112
+ help=(
113
+ "Whether training should be resumed from a previous checkpoint. Use a path saved by"
114
+ ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
115
+ ),
116
+ )
117
+ parser.add_argument(
118
+ "--gradient_accumulation_steps",
119
+ type=int,
120
+ default=1,
121
+ help="Number of updates steps to accumulate before performing a backward/update pass.",
122
+ )
123
+ parser.add_argument(
124
+ "--gradient_checkpointing",
125
+ action="store_true",
126
+ help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
127
+ )
128
+ parser.add_argument(
129
+ "--learning_rate",
130
+ type=float,
131
+ default=1e-4,
132
+ help="Initial learning rate (after the potential warmup period) to use.",
133
+ )
134
+
135
+ parser.add_argument(
136
+ "--guidance_scale",
137
+ type=float,
138
+ default=3.5,
139
+ help="the FLUX.1 dev variant is a guidance distilled model",
140
+ )
141
+ parser.add_argument(
142
+ "--lr_scheduler",
143
+ type=str,
144
+ default="constant",
145
+ help=(
146
+ 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
147
+ ' "constant", "constant_with_warmup"]'
148
+ ),
149
+ )
150
+ parser.add_argument(
151
+ "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
152
+ )
153
+ parser.add_argument(
154
+ "--lr_num_cycles",
155
+ type=int,
156
+ default=1,
157
+ help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
158
+ )
159
+ parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
160
+ parser.add_argument(
161
+ "--dataloader_num_workers",
162
+ type=int,
163
+ default=0,
164
+ help=(
165
+ "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
166
+ ),
167
+ )
168
+ parser.add_argument(
169
+ "--weighting_scheme",
170
+ type=str,
171
+ default="none",
172
+ choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
173
+ help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'),
174
+ )
175
+ parser.add_argument(
176
+ "--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme."
177
+ )
178
+ parser.add_argument(
179
+ "--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme."
180
+ )
181
+ parser.add_argument(
182
+ "--mode_scale",
183
+ type=float,
184
+ default=1.29,
185
+ help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
186
+ )
187
+ parser.add_argument(
188
+ "--optimizer",
189
+ type=str,
190
+ default="AdamW",
191
+ help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
192
+ )
193
+
194
+ parser.add_argument(
195
+ "--use_8bit_adam",
196
+ action="store_true",
197
+ help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
198
+ )
199
+
200
+ parser.add_argument(
201
+ "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
202
+ )
203
+ parser.add_argument(
204
+ "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers."
205
+ )
206
+ parser.add_argument(
207
+ "--prodigy_beta3",
208
+ type=float,
209
+ default=None,
210
+ help="coefficients for computing the Prodigy stepsize using running averages. If set to None, "
211
+ "uses the value of square root of beta2. Ignored if optimizer is adamW",
212
+ )
213
+ parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
214
+ parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
215
+ parser.add_argument(
216
+ "--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder"
217
+ )
218
+
219
+ parser.add_argument(
220
+ "--lora_layers",
221
+ type=str,
222
+ default=None,
223
+ help=(
224
+ 'The transformer modules to apply LoRA training on. Please specify the layers in a comma separated. E.g. - "to_k,to_q,to_v,to_out.0" will result in lora training of attention layers only'
225
+ ),
226
+ )
227
+
228
+ parser.add_argument(
229
+ "--adam_epsilon",
230
+ type=float,
231
+ default=1e-08,
232
+ help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
233
+ )
234
+
235
+ parser.add_argument(
236
+ "--prodigy_use_bias_correction",
237
+ type=bool,
238
+ default=True,
239
+ help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
240
+ )
241
+ parser.add_argument(
242
+ "--prodigy_safeguard_warmup",
243
+ type=bool,
244
+ default=True,
245
+ help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
246
+ "Ignored if optimizer is adamW",
247
+ )
248
+ parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
249
+ parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
250
+ parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
251
+ parser.add_argument(
252
+ "--hub_model_id",
253
+ type=str,
254
+ default=None,
255
+ help="The name of the repository to keep in sync with the local `output_dir`.",
256
+ )
257
+ parser.add_argument(
258
+ "--logging_dir",
259
+ type=str,
260
+ default="logs",
261
+ help=(
262
+ "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
263
+ " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
264
+ ),
265
+ )
266
+ parser.add_argument(
267
+ "--allow_tf32",
268
+ action="store_true",
269
+ help=(
270
+ "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
271
+ " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
272
+ ),
273
+ )
274
+ parser.add_argument(
275
+ "--report_to",
276
+ type=str,
277
+ default="tensorboard",
278
+ help=(
279
+ 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
280
+ ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
281
+ ),
282
+ )
283
+ parser.add_argument(
284
+ "--mixed_precision",
285
+ type=str,
286
+ default=None,
287
+ choices=["no", "fp16", "bf16"],
288
+ help=(
289
+ "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
290
+ " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
291
+ " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
292
+ ),
293
+ )
294
+ parser.add_argument(
295
+ "--upcast_before_saving",
296
+ action="store_true",
297
+ default=False,
298
+ help=(
299
+ "Whether to upcast the trained transformer layers to float32 before saving (at the end of training). "
300
+ "Defaults to precision dtype used for training to save memory"
301
+ ),
302
+ )
303
+ parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
304
+
305
+ if input_args is not None:
306
+ args = parser.parse_args(input_args)
307
+ else:
308
+ args = parser.parse_args()
309
+
310
+ env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
311
+ if env_local_rank != -1 and env_local_rank != args.local_rank:
312
+ args.local_rank = env_local_rank
313
+
314
+ return args
utils/utils.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import threading
4
+ from pathlib import Path
5
+
6
+ import torch
7
+
8
+
9
+ def import_from_transformers_modules(
10
+ pretrained_model_name_or_path, file_name, class_name
11
+ ):
12
+ import transformers
13
+
14
+ module_path = transformers.dynamic_module_utils.get_cached_module_file(
15
+ pretrained_model_name_or_path, file_name
16
+ )
17
+ return transformers.dynamic_module_utils.get_class_in_module(
18
+ class_name, module_path
19
+ )
20
+
21
+
22
+ def deepspeed_zero_init_disabled_context_manager():
23
+ """
24
+ returns either a context list that includes one that will disable zero.Init or an empty context list
25
+ """
26
+ import accelerate
27
+
28
+ deepspeed_plugin = (
29
+ accelerate.state.AcceleratorState().deepspeed_plugin
30
+ if accelerate.state.is_initialized()
31
+ else None
32
+ )
33
+ if deepspeed_plugin is None:
34
+ return []
35
+
36
+ return [deepspeed_plugin.zero3_init_context_manager(enable=False)]
37
+
38
+
39
+ def remove_excess_checkpoints(
40
+ save_directory,
41
+ checkpoints_total_limit: int = None,
42
+ checkpoint_prefix="checkpoint",
43
+ is_main_process: bool = True,
44
+ ):
45
+ # _after_ saving state, check if this save would set us over the `checkpoints_total_limit`
46
+ if is_main_process and checkpoints_total_limit is not None:
47
+ checkpoints = os.listdir(save_directory)
48
+ checkpoints = [d for d in checkpoints if d.startswith(checkpoint_prefix)]
49
+ checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[2]))
50
+
51
+ # _after_ we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit` checkpoints
52
+ if len(checkpoints) > checkpoints_total_limit:
53
+ num_to_remove = len(checkpoints) - checkpoints_total_limit
54
+ removing_checkpoints = checkpoints[0:num_to_remove]
55
+
56
+ print(
57
+ f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
58
+ )
59
+ print(f"removing checkpoints: {', '.join(removing_checkpoints)}")
60
+
61
+ for removing_checkpoint in removing_checkpoints:
62
+ removing_checkpoint = os.path.join(save_directory, removing_checkpoint)
63
+ shutil.rmtree(removing_checkpoint)
64
+
65
+
66
+ def is_distributed_training():
67
+ if torch.distributed.is_available() and torch.distributed.is_initialized():
68
+ return True
69
+ world_size = int(os.environ.get("WORLD_SIZE", 1))
70
+ return world_size > 1
71
+
72
+
73
+ def contain_invalid_grad(optimizer):
74
+ invalid_grad = False
75
+ for param_group in optimizer.param_groups:
76
+ for param in param_group["params"]:
77
+ if param.grad is not None:
78
+ invalid_grad = invalid_grad or (
79
+ torch.isnan(param.grad).any()
80
+ or torch.isinf(param.grad).any()
81
+ or torch.isneginf(param.grad).any()
82
+ )
83
+ if is_distributed_training():
84
+ invalid_grad_flag = torch.tensor(
85
+ [1.0 if invalid_grad else 0.0],
86
+ dtype=torch.float32,
87
+ requires_grad=False,
88
+ ).cuda()
89
+ torch.distributed.all_reduce(
90
+ invalid_grad_flag, op=torch.distributed.ReduceOp.MAX
91
+ )
92
+ invalid_grad = invalid_grad_flag.item() > 0
93
+ return invalid_grad
94
+
95
+
96
+ def patch_npu_record_stream():
97
+ torch.utils.rename_privateuse1_backend("npu")
98
+ record_stream = torch.Tensor.record_stream
99
+
100
+ def _func(*args, **kwargs):
101
+ ret = record_stream(*args, **kwargs)
102
+ torch.cuda.synchronize()
103
+ return ret
104
+
105
+ torch.Tensor.record_stream = _func
106
+
107
+
108
+ def patch_npu_diffusers_get_1d_rotary_pos_embed():
109
+ from typing import Union
110
+ import numpy as np
111
+ import diffusers
112
+
113
+ def __get_1d_rotary_pos_embed(
114
+ dim: int,
115
+ pos: Union[np.ndarray, int],
116
+ theta: float = 10000.0,
117
+ use_real=False,
118
+ linear_factor=1.0,
119
+ ntk_factor=1.0,
120
+ repeat_interleave_real=True,
121
+ freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux)
122
+ ):
123
+ assert dim % 2 == 0
124
+
125
+ if isinstance(pos, int):
126
+ pos = torch.arange(pos)
127
+ if isinstance(pos, np.ndarray):
128
+ pos = torch.from_numpy(pos) # type: ignore # [S]
129
+
130
+ theta = theta * ntk_factor
131
+ freqs = (
132
+ 1.0
133
+ / (
134
+ theta
135
+ ** (
136
+ torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[
137
+ : (dim // 2)
138
+ ]
139
+ / dim
140
+ )
141
+ )
142
+ / linear_factor
143
+ ) # [D/2]
144
+ freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
145
+ if use_real and repeat_interleave_real:
146
+ # flux, hunyuan-dit, cogvideox
147
+ freqs_cos = (
148
+ freqs.cos().float().repeat_interleave(2, dim=1).float()
149
+ ) # [S, D]
150
+ freqs_sin = (
151
+ freqs.sin().float().repeat_interleave(2, dim=1).float()
152
+ ) # [S, D]
153
+ return freqs_cos, freqs_sin
154
+ elif use_real:
155
+ # stable audio
156
+ freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
157
+ freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
158
+ return freqs_cos, freqs_sin
159
+ else:
160
+ # lumina
161
+ freqs_cis = torch.polar(
162
+ torch.ones_like(freqs), freqs
163
+ ) # complex64 # [S, D/2]
164
+ return freqs_cis
165
+
166
+ diffusers.models.embeddings.get_1d_rotary_pos_embed = __get_1d_rotary_pos_embed
utils/vprocess.py ADDED
@@ -0,0 +1,568 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import copy
3
+ import logging
4
+ import math
5
+ import os
6
+ import sys
7
+ import time
8
+ import warnings
9
+ from functools import lru_cache
10
+ from io import BytesIO
11
+ from typing import Optional, Union, Tuple, List, Any, Dict
12
+ from concurrent.futures import ThreadPoolExecutor
13
+
14
+ import requests
15
+ import torch
16
+ import torchvision
17
+ from packaging import version
18
+ from PIL import Image
19
+ import numpy as np
20
+ from torchvision import io, transforms
21
+ from torchvision.transforms import InterpolationMode
22
+
23
+ PREFERRED_KONTEXT_RESOLUTIONS = [
24
+ (672, 1568),
25
+ (688, 1504),
26
+ (720, 1456),
27
+ (752, 1392),
28
+ (800, 1328),
29
+ (832, 1248),
30
+ (880, 1184),
31
+ (944, 1104),
32
+ (1024, 1024),
33
+ (1104, 944),
34
+ (1184, 880),
35
+ (1248, 832),
36
+ (1328, 800),
37
+ (1392, 752),
38
+ (1456, 720),
39
+ (1504, 688),
40
+ (1568, 672),
41
+ ]
42
+
43
+ def resizeinput(img):
44
+ multiple_of = 16
45
+ image_height, image_width = img.height, img.width
46
+ aspect_ratio = image_width / image_height
47
+ _, image_width, image_height = min(
48
+ (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
49
+ )
50
+ image_width = image_width // multiple_of * multiple_of
51
+ image_height = image_height // multiple_of * multiple_of
52
+ img = img.resize((image_width, image_height), Image.LANCZOS)
53
+ return img
54
+
55
+
56
+ MAX_RATIO = 200
57
+ SPATIAL_MERGE_SIZE = 2
58
+ IMAGE_MIN_TOKEN_NUM = 4
59
+ IMAGE_MAX_TOKEN_NUM = 16384
60
+ VIDEO_MIN_TOKEN_NUM = 128
61
+ VIDEO_MAX_TOKEN_NUM = 768
62
+
63
+ FPS = 2.0
64
+ FRAME_FACTOR = 2
65
+ FPS_MIN_FRAMES = 4
66
+ FPS_MAX_FRAMES = 768
67
+ MAX_NUM_WORKERS_FETCH_VIDEO = 8
68
+
69
+ MODEL_SEQ_LEN = int(float(os.environ.get('MODEL_SEQ_LEN', 128000)))
70
+ logger = logging.getLogger(__name__)
71
+
72
+
73
+ def round_by_factor(number: int, factor: int) -> int:
74
+ """Returns the closest integer to 'number' that is divisible by 'factor'."""
75
+ return round(number / factor) * factor
76
+
77
+
78
+ def ceil_by_factor(number: int, factor: int) -> int:
79
+ """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
80
+ return math.ceil(number / factor) * factor
81
+
82
+
83
+ def floor_by_factor(number: int, factor: int) -> int:
84
+ """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
85
+ return math.floor(number / factor) * factor
86
+
87
+
88
+ def smart_resize(height: int, width: int, factor: int, min_pixels: Optional[int] = None, max_pixels: Optional[int] = None) -> Tuple[int, int]:
89
+ """
90
+ Rescales the image so that the following conditions are met:
91
+
92
+ 1. Both dimensions (height and width) are divisible by 'factor'.
93
+ 2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
94
+ 3. The aspect ratio of the image is maintained as closely as possible.
95
+ """
96
+ max_pixels = max_pixels if max_pixels is not None else (IMAGE_MAX_TOKEN_NUM * factor ** 2)
97
+ min_pixels = min_pixels if min_pixels is not None else (IMAGE_MIN_TOKEN_NUM * factor ** 2)
98
+ assert max_pixels >= min_pixels, "The max_pixels of image must be greater than or equal to min_pixels."
99
+ if max(height, width) / min(height, width) > MAX_RATIO:
100
+ raise ValueError(
101
+ f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
102
+ )
103
+ h_bar = max(factor, round_by_factor(height, factor))
104
+ w_bar = max(factor, round_by_factor(width, factor))
105
+ if h_bar * w_bar > max_pixels:
106
+ beta = math.sqrt((height * width) / max_pixels)
107
+ h_bar = floor_by_factor(height / beta, factor)
108
+ w_bar = floor_by_factor(width / beta, factor)
109
+ elif h_bar * w_bar < min_pixels:
110
+ beta = math.sqrt(min_pixels / (height * width))
111
+ h_bar = ceil_by_factor(height * beta, factor)
112
+ w_bar = ceil_by_factor(width * beta, factor)
113
+ return h_bar, w_bar
114
+
115
+
116
+ def to_rgb(pil_image: Image.Image) -> Image.Image:
117
+ if pil_image.mode == 'RGBA':
118
+ white_background = Image.new("RGB", pil_image.size, (255, 255, 255))
119
+ white_background.paste(pil_image, mask=pil_image.split()[3]) # Use alpha channel as mask
120
+ return white_background
121
+ else:
122
+ return pil_image.convert("RGB")
123
+
124
+
125
+ def fetch_image(ele: Dict[str, Union[str, Image.Image]], image_patch_size: int = 14) -> Image.Image:
126
+ if "image" in ele:
127
+ image = ele["image"]
128
+ else:
129
+ image = ele["image_url"]
130
+
131
+ image_obj = None
132
+ patch_factor = int(image_patch_size * SPATIAL_MERGE_SIZE)
133
+ if isinstance(image, Image.Image):
134
+ image_obj = image
135
+ elif image.startswith("http://") or image.startswith("https://"):
136
+ with requests.get(image, stream=True) as response:
137
+ response.raise_for_status()
138
+ with BytesIO(response.content) as bio:
139
+ image_obj = copy.deepcopy(Image.open(bio))
140
+ elif image.startswith("file://"):
141
+ image_obj = Image.open(image[7:])
142
+ elif image.startswith("data:image"):
143
+ if "base64," in image:
144
+ _, base64_data = image.split("base64,", 1)
145
+ data = base64.b64decode(base64_data)
146
+ with BytesIO(data) as bio:
147
+ image_obj = copy.deepcopy(Image.open(bio))
148
+ else:
149
+ image_obj = Image.open(image)
150
+ if image_obj is None:
151
+ raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
152
+ image = to_rgb(image_obj)
153
+
154
+ ## resize
155
+ image = resizeinput(image)
156
+ # if "resized_height" in ele and "resized_width" in ele:
157
+ # resized_height, resized_width = smart_resize(
158
+ # ele["resized_height"],
159
+ # ele["resized_width"],
160
+ # factor=patch_factor,
161
+ # )
162
+ # else:
163
+ # width, height = image.size
164
+ # min_pixels = ele.get("min_pixels", IMAGE_MIN_TOKEN_NUM * patch_factor ** 2)
165
+ # max_pixels = ele.get("max_pixels", IMAGE_MAX_TOKEN_NUM * patch_factor ** 2)
166
+ # resized_height, resized_width = smart_resize(
167
+ # height,
168
+ # width,
169
+ # factor=patch_factor,
170
+ # min_pixels=min_pixels,
171
+ # max_pixels=max_pixels,
172
+ # )
173
+ # print(f"resized_height: {resized_height}, resized_width: {resized_width}")
174
+ # image = image.resize((resized_width, resized_height))
175
+ return image
176
+
177
+
178
+ def smart_nframes(
179
+ ele: Dict[str, Any],
180
+ total_frames: int,
181
+ video_fps: Union[int, float],
182
+ ) -> int:
183
+ """calculate the number of frames for video used for model inputs.
184
+
185
+ Args:
186
+ ele (dict): a dict contains the configuration of video.
187
+ support either `fps` or `nframes`:
188
+ - nframes: the number of frames to extract for model inputs.
189
+ - fps: the fps to extract frames for model inputs.
190
+ - min_frames: the minimum number of frames of the video, only used when fps is provided.
191
+ - max_frames: the maximum number of frames of the video, only used when fps is provided.
192
+ total_frames (int): the original total number of frames of the video.
193
+ video_fps (int | float): the original fps of the video.
194
+
195
+ Raises:
196
+ ValueError: nframes should in interval [FRAME_FACTOR, total_frames].
197
+
198
+ Returns:
199
+ int: the number of frames for video used for model inputs.
200
+ """
201
+ assert not ("fps" in ele and "nframes" in ele), "Only accept either `fps` or `nframes`"
202
+ if "nframes" in ele:
203
+ nframes = round_by_factor(ele["nframes"], FRAME_FACTOR)
204
+ else:
205
+ fps = ele.get("fps", FPS)
206
+ min_frames = ceil_by_factor(ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR)
207
+ max_frames = floor_by_factor(ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), FRAME_FACTOR)
208
+ nframes = total_frames / video_fps * fps
209
+ if nframes > total_frames:
210
+ logger.warning(f"smart_nframes: nframes[{nframes}] > total_frames[{total_frames}]")
211
+ nframes = min(min(max(nframes, min_frames), max_frames), total_frames)
212
+ nframes = floor_by_factor(nframes, FRAME_FACTOR)
213
+ if not (FRAME_FACTOR <= nframes and nframes <= total_frames):
214
+ raise ValueError(f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}.")
215
+ return nframes
216
+
217
+
218
+ def _read_video_torchvision(
219
+ ele: Dict[str, Any],
220
+ ) -> Tuple[torch.Tensor, float]:
221
+ """read video using torchvision.io.read_video
222
+
223
+ Args:
224
+ ele (dict): a dict contains the configuration of video.
225
+ support keys:
226
+ - video: the path of video. support "file://", "http://", "https://" and local path.
227
+ - video_start: the start time of video.
228
+ - video_end: the end time of video.
229
+ Returns:
230
+ torch.Tensor: the video tensor with shape (T, C, H, W).
231
+ """
232
+ video_path = ele["video"]
233
+ if version.parse(torchvision.__version__) < version.parse("0.19.0"):
234
+ if "http://" in video_path or "https://" in video_path:
235
+ warnings.warn("torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0.")
236
+ if "file://" in video_path:
237
+ video_path = video_path[7:]
238
+ st = time.time()
239
+ video, audio, info = io.read_video(
240
+ video_path,
241
+ start_pts=ele.get("video_start", 0.0),
242
+ end_pts=ele.get("video_end", None),
243
+ pts_unit="sec",
244
+ output_format="TCHW",
245
+ )
246
+ total_frames, video_fps = video.size(0), info["video_fps"]
247
+ logger.info(f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
248
+ nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
249
+ idx = torch.linspace(0, total_frames - 1, nframes).round().long()
250
+ sample_fps = nframes / max(total_frames, 1e-6) * video_fps
251
+ video = video[idx]
252
+
253
+ video_metadata = dict(
254
+ fps=video_fps,
255
+ frames_indices=idx,
256
+ total_num_frames=total_frames,
257
+ video_backend="torchvision",
258
+ )
259
+ return video, video_metadata, sample_fps
260
+
261
+
262
+ def is_decord_available() -> bool:
263
+ import importlib.util
264
+
265
+ return importlib.util.find_spec("decord") is not None
266
+
267
+
268
+ def calculate_video_frame_range(
269
+ ele: Dict[str, Any],
270
+ total_frames: int,
271
+ video_fps: float,
272
+ ) -> Tuple[int, int, int]:
273
+ """
274
+ Calculate the start and end frame indices based on the given time range.
275
+
276
+ Args:
277
+ ele (dict): A dictionary containing optional 'video_start' and 'video_end' keys (in seconds).
278
+ total_frames (int): Total number of frames in the video.
279
+ video_fps (float): Frames per second of the video.
280
+
281
+ Returns:
282
+ tuple: A tuple containing (start_frame, end_frame, frame_count).
283
+
284
+ Raises:
285
+ ValueError: If input parameters are invalid or the time range is inconsistent.
286
+ """
287
+ # Validate essential parameters
288
+ if video_fps <= 0:
289
+ raise ValueError("video_fps must be a positive number")
290
+ if total_frames <= 0:
291
+ raise ValueError("total_frames must be a positive integer")
292
+
293
+ # Get start and end time in seconds
294
+ video_start = ele.get("video_start", None)
295
+ video_end = ele.get("video_end", None)
296
+ if video_start is None and video_end is None:
297
+ return 0, total_frames - 1, total_frames
298
+
299
+ max_duration = total_frames / video_fps
300
+ # Process start frame
301
+ if video_start is not None:
302
+ video_start_clamped = max(0.0, min(video_start, max_duration))
303
+ start_frame = math.ceil(video_start_clamped * video_fps)
304
+ else:
305
+ start_frame = 0
306
+ # Process end frame
307
+ if video_end is not None:
308
+ video_end_clamped = max(0.0, min(video_end, max_duration))
309
+ end_frame = math.floor(video_end_clamped * video_fps)
310
+ end_frame = min(end_frame, total_frames - 1)
311
+ else:
312
+ end_frame = total_frames - 1
313
+
314
+ # Validate frame order
315
+ if start_frame >= end_frame:
316
+ raise ValueError(
317
+ f"Invalid time range: Start frame {start_frame} (at {video_start_clamped if video_start is not None else 0}s) "
318
+ f"exceeds end frame {end_frame} (at {video_end_clamped if video_end is not None else max_duration}s). "
319
+ f"Video duration: {max_duration:.2f}s ({total_frames} frames @ {video_fps}fps)"
320
+ )
321
+
322
+ logger.info(f"calculate video frame range: {start_frame=}, {end_frame=}, {total_frames=} from {video_start=}, {video_end=}, {video_fps=:.3f}")
323
+ return start_frame, end_frame, end_frame - start_frame + 1
324
+
325
+
326
+ def _read_video_decord(
327
+ ele: Dict[str, Any],
328
+ ) -> Tuple[torch.Tensor, float]:
329
+ """read video using decord.VideoReader
330
+
331
+ Args:
332
+ ele (dict): a dict contains the configuration of video.
333
+ support keys:
334
+ - video: the path of video. support "file://", "http://", "https://" and local path.
335
+ - video_start: the start time of video.
336
+ - video_end: the end time of video.
337
+ Returns:
338
+ torch.Tensor: the video tensor with shape (T, C, H, W).
339
+ """
340
+ import decord
341
+ video_path = ele["video"]
342
+ st = time.time()
343
+ vr = decord.VideoReader(video_path)
344
+ total_frames, video_fps = len(vr), vr.get_avg_fps()
345
+ start_frame, end_frame, total_frames = calculate_video_frame_range(
346
+ ele,
347
+ total_frames,
348
+ video_fps,
349
+ )
350
+ nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
351
+ idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist()
352
+ video = vr.get_batch(idx).asnumpy()
353
+ video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format
354
+ logger.info(f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
355
+ sample_fps = nframes / max(total_frames, 1e-6) * video_fps
356
+
357
+ video_metadata = dict(
358
+ fps=video_fps,
359
+ frames_indices=idx,
360
+ total_num_frames=total_frames,
361
+ video_backend="decord",
362
+ )
363
+ return video, video_metadata, sample_fps
364
+
365
+
366
+ def is_torchcodec_available() -> bool:
367
+ import importlib.util
368
+
369
+ return importlib.util.find_spec("torchcodec") is not None
370
+
371
+
372
+ def _read_video_torchcodec(
373
+ ele: Dict[str, Any],
374
+ ) -> Tuple[torch.Tensor, float]:
375
+ """read video using torchcodec.decoders.VideoDecoder
376
+
377
+ Args:
378
+ ele (dict): a dict contains the configuration of video.
379
+ support keys:
380
+ - video: the path of video. support "file://", "http://", "https://" and local path.
381
+ - video_start: the start time of video.
382
+ - video_end: the end time of video.
383
+ Returns:
384
+ torch.Tensor: the video tensor with shape (T, C, H, W).
385
+ """
386
+ from torchcodec.decoders import VideoDecoder
387
+ TORCHCODEC_NUM_THREADS = int(os.environ.get('TORCHCODEC_NUM_THREADS', 8))
388
+ logger.info(f"set TORCHCODEC_NUM_THREADS: {TORCHCODEC_NUM_THREADS}")
389
+ video_path = ele["video"]
390
+ st = time.time()
391
+ decoder = VideoDecoder(video_path, num_ffmpeg_threads=TORCHCODEC_NUM_THREADS)
392
+ video_fps = decoder.metadata.average_fps
393
+ total_frames = decoder.metadata.num_frames
394
+ start_frame, end_frame, total_frames = calculate_video_frame_range(
395
+ ele,
396
+ total_frames,
397
+ video_fps,
398
+ )
399
+ nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
400
+ idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist()
401
+ sample_fps = nframes / max(total_frames, 1e-6) * video_fps
402
+ video = decoder.get_frames_at(indices=idx).data
403
+ logger.info(f"torchcodec: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
404
+
405
+ video_metadata = dict(
406
+ fps=video_fps,
407
+ frames_indices=idx,
408
+ total_num_frames=total_frames,
409
+ video_backend="torchcodec",
410
+ )
411
+ return video, video_metadata, sample_fps
412
+
413
+
414
+ VIDEO_READER_BACKENDS = {
415
+ "decord": _read_video_decord,
416
+ "torchvision": _read_video_torchvision,
417
+ "torchcodec": _read_video_torchcodec,
418
+ }
419
+
420
+ FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None)
421
+
422
+
423
+ @lru_cache(maxsize=1)
424
+ def get_video_reader_backend() -> str:
425
+ if FORCE_QWENVL_VIDEO_READER is not None:
426
+ video_reader_backend = FORCE_QWENVL_VIDEO_READER
427
+ elif is_torchcodec_available():
428
+ video_reader_backend = "torchcodec"
429
+ elif is_decord_available():
430
+ video_reader_backend = "decord"
431
+ else:
432
+ video_reader_backend = "torchvision"
433
+ print(f"qwen-vl-utils using {video_reader_backend} to read video.", file=sys.stderr)
434
+ return video_reader_backend
435
+
436
+
437
+ def fetch_video(ele: Dict[str, Any], image_patch_size: int = 14, return_video_sample_fps: bool = False,
438
+ return_video_metadata: bool = False) -> Union[torch.Tensor, List[Image.Image]]:
439
+ image_factor = image_patch_size * SPATIAL_MERGE_SIZE
440
+ VIDEO_FRAME_MIN_PIXELS = VIDEO_MIN_TOKEN_NUM * image_factor * image_factor
441
+ VIDEO_FRAME_MAX_PIXELS = VIDEO_MAX_TOKEN_NUM * image_factor * image_factor
442
+ if isinstance(ele["video"], str):
443
+ video_reader_backend = get_video_reader_backend()
444
+ try:
445
+ video, video_metadata, sample_fps = VIDEO_READER_BACKENDS[video_reader_backend](ele)
446
+ except Exception as e:
447
+ logger.warning(f"video_reader_backend {video_reader_backend} error, use torchvision as default, msg: {e}")
448
+ video, video_metadata, sample_fps = VIDEO_READER_BACKENDS["torchvision"](ele)
449
+ else:
450
+ # The input is a list of frames
451
+ assert isinstance(ele["video"], (list, tuple))
452
+ process_info = ele.copy()
453
+ process_info.pop("type", None)
454
+ process_info.pop("video", None)
455
+ # use ThreadPoolExecutor to parallel process frames
456
+ max_workers = min(MAX_NUM_WORKERS_FETCH_VIDEO, len(ele["video"]))
457
+ with ThreadPoolExecutor(max_workers=max_workers) as executor:
458
+ futures = [
459
+ executor.submit(fetch_image, {"image": video_element, **process_info}, image_factor)
460
+ for video_element in ele["video"]
461
+ ]
462
+ image_list = [future.result() for future in futures]
463
+
464
+ nframes = ceil_by_factor(len(image_list), FRAME_FACTOR)
465
+ if len(image_list) < nframes:
466
+ image_list.extend([image_list[-1]] * (nframes - len(image_list)))
467
+
468
+ sample_fps = ele.get("sample_fps", 2.0)
469
+ video = torch.stack([
470
+ torch.from_numpy(np.array(image).transpose(2, 0, 1))
471
+ for image in image_list
472
+ ])
473
+
474
+ # fake video metadata
475
+ raw_fps = process_info.pop("raw_fps", sample_fps)
476
+ video_metadata = dict(
477
+ fps=raw_fps,
478
+ frames_indices=[i for i in range(len(video))],
479
+ total_num_frames=(nframes / sample_fps) * raw_fps,
480
+ )
481
+
482
+ nframes, _, height, width = video.shape
483
+ min_pixels = ele.get("min_pixels", VIDEO_FRAME_MIN_PIXELS)
484
+ total_pixels = ele.get("total_pixels", MODEL_SEQ_LEN * image_factor * image_factor * 0.9)
485
+ max_pixels = max(min(VIDEO_FRAME_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), int(min_pixels * 1.05))
486
+ max_pixels_supposed = ele.get("max_pixels", max_pixels)
487
+ if max_pixels_supposed > max_pixels:
488
+ logger.warning(f"The given max_pixels[{max_pixels_supposed}] exceeds limit[{max_pixels}].")
489
+ max_pixels = min(max_pixels_supposed, max_pixels)
490
+ if "resized_height" in ele and "resized_width" in ele:
491
+ resized_height, resized_width = smart_resize(
492
+ ele["resized_height"],
493
+ ele["resized_width"],
494
+ factor=image_factor,
495
+ )
496
+ else:
497
+ resized_height, resized_width = smart_resize(
498
+ height,
499
+ width,
500
+ factor=image_factor,
501
+ min_pixels=min_pixels,
502
+ max_pixels=max_pixels,
503
+ )
504
+ video = transforms.functional.resize(
505
+ video,
506
+ [resized_height, resized_width],
507
+ interpolation=InterpolationMode.BICUBIC,
508
+ antialias=True,
509
+ ).float()
510
+
511
+ final_video = (video, video_metadata) if return_video_metadata else video
512
+ if return_video_sample_fps:
513
+ return final_video, sample_fps
514
+ return final_video
515
+
516
+
517
+ def extract_vision_info(conversations: Union[List[Dict[str, Any]], List[List[Dict[str, Any]]]]) -> List[Dict[str, Any]]:
518
+ vision_infos = []
519
+ if isinstance(conversations[0], dict):
520
+ conversations = [conversations]
521
+ for conversation in conversations:
522
+ for message in conversation:
523
+ if isinstance(message["content"], list):
524
+ for ele in message["content"]:
525
+ if (
526
+ "image" in ele
527
+ or "image_url" in ele
528
+ or "video" in ele
529
+ or ele.get("type", "text") in ("image", "image_url", "video")
530
+ ):
531
+ vision_infos.append(ele)
532
+ return vision_infos
533
+
534
+
535
+ def process_vision_info(
536
+ conversations: Union[List[Dict[str, Any]], List[List[Dict[str, Any]]]],
537
+ return_video_kwargs: bool = False,
538
+ return_video_metadata: bool = False,
539
+ image_patch_size: int = 14,
540
+ ) -> Tuple[Optional[List[Image.Image]], Optional[List[Union[torch.Tensor, List[Image.Image]]]], Optional[Dict[str, Any]]]:
541
+
542
+ vision_infos = extract_vision_info(conversations)
543
+ ## Read images or videos
544
+ image_inputs = []
545
+ video_inputs = []
546
+ video_sample_fps_list = []
547
+ for vision_info in vision_infos:
548
+ if "image" in vision_info or "image_url" in vision_info:
549
+ image_inputs.append(fetch_image(vision_info, image_patch_size=image_patch_size))
550
+ elif "video" in vision_info:
551
+ video_input, video_sample_fps = fetch_video(vision_info, return_video_sample_fps=True,
552
+ image_patch_size=image_patch_size, return_video_metadata=return_video_metadata)
553
+ video_sample_fps_list.append(video_sample_fps)
554
+ video_inputs.append(video_input)
555
+ else:
556
+ raise ValueError("image, image_url or video should in content.")
557
+ if len(image_inputs) == 0:
558
+ image_inputs = None
559
+ if len(video_inputs) == 0:
560
+ video_inputs = None
561
+
562
+ video_kwargs = {'do_sample_frames': False}
563
+ if not return_video_metadata: # BC for qwen2.5vl
564
+ video_kwargs.update({'fps': video_sample_fps_list})
565
+
566
+ if return_video_kwargs:
567
+ return image_inputs, video_inputs, video_kwargs
568
+ return image_inputs, video_inputs
web_edit.py CHANGED
@@ -1,8 +1,9 @@
1
  import torch
2
- from pipeline_flux_kontext import FluxKontextPipeline
3
  from diffusers.utils import load_image
4
  from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
5
- from qwen_vl_utils import process_vision_info
 
6
  import os
7
  import re
8
  from PIL import Image
@@ -53,7 +54,7 @@ def extract_gen_content(text):
53
 
54
  print(f"Loading models from vlm_path: {vlm_path}, edit_lora_path: {edit_lora_path}")
55
 
56
- pipe = FluxKontextPipeline.from_pretrained(
57
  "black-forest-labs/FLUX.1-Kontext-dev",
58
  torch_dtype=torch.bfloat16
59
  )
@@ -117,20 +118,19 @@ def find_closest_resolution(width, height, preferred_resolutions):
117
 
118
  def perform_edit(input_img_paths, input_instruction, output_path):
119
  prefix = " It is editing task."
120
- source_imgs = [load_image(path) for path in input_img_paths]
121
- resized_imgs = []
122
- for img in source_imgs:
123
- target_resolution = find_closest_resolution(img.width, img.height, PREFERRED_KONTEXT_RESOLUTIONS)
124
- resized_img = img.resize(target_resolution, Image.LANCZOS)
125
- resized_imgs.append(resized_img)
126
  prompt = infer_vlm(input_img_paths, input_instruction, prefix)
127
  prompt = extract_gen_content(prompt)
128
  print(f"Generated Prompt for VLM: {prompt}")
129
 
130
  image = pipe(
131
- images=resized_imgs,
132
- height=resized_imgs[0].height,
133
- width=resized_imgs[0].width,
134
  prompt=prompt,
135
  num_inference_steps=30,
136
  guidance_scale=3.5,
@@ -227,15 +227,15 @@ with gr.Blocks(theme=gr.themes.Soft(), title="DreamOmni2", css=css) as demo:
227
  gr.Examples(
228
  label="Editing Examples",
229
  examples=[
230
- ["edit_tests/4/ref_0.jpg", "edit_tests/4/ref_1.jpg", "Replace the first image have the same image style as the second image.","edit_tests/4/res.jpg"],
231
- ["edit_tests/5/ref_0.jpg", "edit_tests/5/ref_1.jpg", "Make the person in the first image have the same hairstyle as the person in the second image.","edit_tests/5/res.jpg"],
232
- ["edit_tests/src.jpg", "edit_tests/ref.jpg", "Make the woman from the second image stand on the road in the first image.","edit_tests/edi_res.png"],
233
- ["edit_tests/1/ref_0.jpg", "edit_tests/1/ref_1.jpg", "Replace the lantern in the first image with the dog in the second image.","edit_tests/1/res.jpg"],
234
- ["edit_tests/2/ref_0.jpg", "edit_tests/2/ref_1.jpg", "Replace the suit in the first image with the clothes in the second image.","edit_tests/2/res.jpg"],
235
- ["edit_tests/3/ref_0.jpg", "edit_tests/3/ref_1.jpg", "Make the first image has the same light condition as the second image.","edit_tests/3/res.jpg"],
236
- ["edit_tests/6/ref_0.jpg", "edit_tests/6/ref_1.jpg", "Make the words in the first image have the same font as the words in the second image.","edit_tests/6/res.jpg"],
237
- ["edit_tests/7/ref_0.jpg", "edit_tests/7/ref_1.jpg", "Make the car in the first image have the same pattern as the mouse in the second image.","edit_tests/7/res.jpg"],
238
- ["edit_tests/8/ref_0.jpg", "edit_tests/8/ref_1.jpg", "Make the dress in the first image have the same pattern in the second image.","edit_tests/8/res.jpg"],
239
  ],
240
  inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
241
  cache_examples=False,
 
1
  import torch
2
+ from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
3
  from diffusers.utils import load_image
4
  from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
5
+ # from qwen_vl_utils import process_vision_info
6
+ from utils.vprocess import process_vision_info, resizeinput
7
  import os
8
  import re
9
  from PIL import Image
 
54
 
55
  print(f"Loading models from vlm_path: {vlm_path}, edit_lora_path: {edit_lora_path}")
56
 
57
+ pipe = DreamOmni2Pipeline.from_pretrained(
58
  "black-forest-labs/FLUX.1-Kontext-dev",
59
  torch_dtype=torch.bfloat16
60
  )
 
118
 
119
  def perform_edit(input_img_paths, input_instruction, output_path):
120
  prefix = " It is editing task."
121
+ source_imgs = []
122
+ for path in input_img_paths:
123
+ img = load_image(path)
124
+ # source_imgs.append(img)
125
+ source_imgs.append(resizeinput(img))
 
126
  prompt = infer_vlm(input_img_paths, input_instruction, prefix)
127
  prompt = extract_gen_content(prompt)
128
  print(f"Generated Prompt for VLM: {prompt}")
129
 
130
  image = pipe(
131
+ images=source_imgs,
132
+ height=source_imgs[0].height,
133
+ width=source_imgs[0].width,
134
  prompt=prompt,
135
  num_inference_steps=30,
136
  guidance_scale=3.5,
 
227
  gr.Examples(
228
  label="Editing Examples",
229
  examples=[
230
+ ["example_input/edit_tests/4/ref_0.jpg", "example_input/edit_tests/4/ref_1.jpg", "Replace the first image have the same image style as the second image.","example_input/edit_tests/4/res.jpg"],
231
+ ["example_input/edit_tests/5/ref_0.jpg", "example_input/edit_tests/5/ref_1.jpg", "Make the person in the first image have the same hairstyle as the person in the second image.","example_input/edit_tests/5/res.jpg"],
232
+ ["example_input/edit_tests/src.jpg", "example_input/edit_tests/ref.jpg", "Make the woman from the second image stand on the road in the first image.","example_input/edit_tests/edi_res.png"],
233
+ ["example_input/edit_tests/1/ref_0.jpg", "example_input/edit_tests/1/ref_1.jpg", "Replace the lantern in the first image with the dog in the second image.","example_input/edit_tests/1/res.jpg"],
234
+ ["example_input/edit_tests/2/ref_0.jpg", "example_input/edit_tests/2/ref_1.jpg", "Replace the suit in the first image with the clothes in the second image.","example_input/edit_tests/2/res.jpg"],
235
+ ["example_input/edit_tests/3/ref_0.jpg", "example_input/edit_tests/3/ref_1.jpg", "Make the first image has the same light condition as the second image.","example_input/edit_tests/3/res.jpg"],
236
+ ["example_input/edit_tests/6/ref_0.jpg", "example_input/edit_tests/6/ref_1.jpg", "Make the words in the first image have the same font as the words in the second image.","example_input/edit_tests/6/res.jpg"],
237
+ ["example_input/edit_tests/7/ref_0.jpg", "example_input/edit_tests/7/ref_1.jpg", "Make the car in the first image have the same pattern as the mouse in the second image.","example_input/edit_tests/7/res.jpg"],
238
+ ["example_input/edit_tests/8/ref_0.jpg", "example_input/edit_tests/8/ref_1.jpg", "Make the dress in the first image have the same pattern in the second image.","example_input/edit_tests/8/res.jpg"],
239
  ],
240
  inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
241
  cache_examples=False,
web_generate.py CHANGED
@@ -1,8 +1,9 @@
1
  import torch
2
- from pipeline_flux_kontext import FluxKontextPipeline
3
  from diffusers.utils import load_image
4
  from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
5
- from qwen_vl_utils import process_vision_info
 
6
  import os
7
  import re
8
  from PIL import Image
@@ -53,7 +54,7 @@ def extract_gen_content(text):
53
 
54
  print(f"Loading models from vlm_path: {vlm_path}, gen_lora_path: {gen_lora_path}")
55
 
56
- pipe = FluxKontextPipeline.from_pretrained(
57
  "black-forest-labs/FLUX.1-Kontext-dev",
58
  torch_dtype=torch.bfloat16
59
  )
@@ -118,18 +119,17 @@ def find_closest_resolution(width, height, preferred_resolutions):
118
 
119
  def perform_generation(input_img_paths, input_instruction, output_path, height=1024, width=1024):
120
  prefix = " It is generation task."
121
- source_imgs = [load_image(path) for path in input_img_paths]
122
- resized_imgs = []
123
- for img in source_imgs:
124
- target_resolution = find_closest_resolution(img.width, img.height, PREFERRED_KONTEXT_RESOLUTIONS)
125
- resized_img = img.resize(target_resolution, Image.LANCZOS)
126
- resized_imgs.append(resized_img)
127
  prompt = infer_vlm(input_img_paths, input_instruction, prefix)
128
  prompt = extract_gen_content(prompt)
129
  print(f"Generated Prompt for VLM: {prompt}")
130
 
131
  image = pipe(
132
- images=resized_imgs,
133
  height=height,
134
  width=width,
135
  prompt=prompt,
@@ -229,10 +229,10 @@ with gr.Blocks(theme=gr.themes.Soft(), title="DreamOmni2", css=css) as demo:
229
  label="Generation Examples",
230
  examples=[
231
  [
232
- "gen_tests/img1.jpg",
233
- "gen_tests/img2.jpg",
234
  "In the scene, the character from the first image stands on the left, and the character from the second image stands on the right. They are shaking hands against the backdrop of a spaceship interior.",
235
- "gen_tests/gen_res.png"
236
  ]
237
  ],
238
  inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
 
1
  import torch
2
+ from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
3
  from diffusers.utils import load_image
4
  from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
5
+ # from qwen_vl_utils import process_vision_info
6
+ from utils.vprocess import process_vision_info, resizeinput
7
  import os
8
  import re
9
  from PIL import Image
 
54
 
55
  print(f"Loading models from vlm_path: {vlm_path}, gen_lora_path: {gen_lora_path}")
56
 
57
+ pipe = DreamOmni2Pipeline.from_pretrained(
58
  "black-forest-labs/FLUX.1-Kontext-dev",
59
  torch_dtype=torch.bfloat16
60
  )
 
119
 
120
  def perform_generation(input_img_paths, input_instruction, output_path, height=1024, width=1024):
121
  prefix = " It is generation task."
122
+ source_imgs = []
123
+ for path in input_img_paths:
124
+ img = load_image(path)
125
+ # source_imgs.append(img)
126
+ source_imgs.append(resizeinput(img))
 
127
  prompt = infer_vlm(input_img_paths, input_instruction, prefix)
128
  prompt = extract_gen_content(prompt)
129
  print(f"Generated Prompt for VLM: {prompt}")
130
 
131
  image = pipe(
132
+ images=source_imgs,
133
  height=height,
134
  width=width,
135
  prompt=prompt,
 
229
  label="Generation Examples",
230
  examples=[
231
  [
232
+ "example_input/gen_tests/img1.jpg",
233
+ "example_input/gen_tests/img2.jpg",
234
  "In the scene, the character from the first image stands on the left, and the character from the second image stands on the right. They are shaking hands against the backdrop of a spaceship interior.",
235
+ "example_input/gen_tests/gen_res.png"
236
  ]
237
  ],
238
  inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],