import torch try: import torch_npu from torch_npu.contrib import transfer_to_npu import importlib import transformers.utils import transformers.models origin_utils = transformers.utils origin_models = transformers.models import flash_attn flash_attn.hack_transformers_flash_attn_2_available_check() importlib.reload(transformers.utils) importlib.reload(transformers.models) origin_func = torch.nn.functional.interpolate def new_func(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): if mode == "bilinear": dtype = input.dtype res = origin_func(input.to(torch.bfloat16), size, scale_factor, mode, align_corners, recompute_scale_factor, antialias) return res.to(dtype) else: return origin_func(input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias) torch.nn.functional.interpolate = new_func from utils import patch_npu_record_stream from utils import patch_npu_diffusers_get_1d_rotary_pos_embed patch_npu_record_stream() patch_npu_diffusers_get_1d_rotary_pos_embed() USE_NPU = True except: USE_NPU = False from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline from diffusers.utils import load_image from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor # from qwen_vl_utils import process_vision_info from utils.vprocess import process_vision_info, resizeinput import os import argparse from tqdm import tqdm import json from PIL import Image import re import argparse if USE_NPU: device = "npu" else: device = "cuda" def extract_gen_content(text): text = text[6:-7] return text def parse_args(): """Parses command-line arguments for model paths and server configuration.""" parser = argparse.ArgumentParser() parser.add_argument( "--vlm_path", type=str, default="./models/vlm-model", help="Path to the VLM model directory." ) parser.add_argument( "--gen_lora_path", type=str, default="./models/gen_lora", help="Path to the FLUX.1-Kontext generation LoRA weights directory." ) parser.add_argument( "--base_model_path", type=str, default="black-forest-labs/FLUX.1-Kontext-dev", help="Path to the FLUX.1-Kontext editing." ) parser.add_argument( "--input_img_path", type=str, nargs='+', # Accept one or more input paths default=["example_input/gen_tests/img1.jpg","example_input/gen_tests/img2.jpg"], help="List of input image paths (e.g., src and ref images)." ) # Argument for the input instruction parser.add_argument( "--input_instruction", type=str, default="In the scene, the character from the first image stands on the left, and the character from the second image stands on the right. They are shaking hands against the backdrop of a spaceship interior.", help="Instruction for image generation." ) parser.add_argument( "--height", type=int, default=1024, help="The height of output image." ) parser.add_argument( "--width", type=int, default=1024, help="The width of output image." ) # Argument for the output image path parser.add_argument( "--output_path", type=str, default="example_input/gen_tests/gen_res.png", help="Path to save the output image." ) args = parser.parse_args() return args ARGS = parse_args() vlm_path = ARGS.vlm_path gen_lora_path = ARGS.gen_lora_path base_model = ARGS.base_model_path pipe = DreamOmni2Pipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) pipe.to(device) pipe.load_lora_weights( gen_lora_path, adapter_name="generation" ) pipe.set_adapters(["generation"], adapter_weights=[1]) vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( vlm_path, torch_dtype="bfloat16", device_map="cuda" ) processor = AutoProcessor.from_pretrained(vlm_path) def infer_vlm(input_img_path,input_instruction,prefix): tp=[] for path in input_img_path: tp.append({"type": "image", "image": path}) tp.append({"type": "text", "text": input_instruction+prefix}) messages = [ { "role": "user", "content": tp, } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] def infer(source_imgs,prompt,height=1024,width=1024): image = pipe( images=source_imgs, height=height, width=width, prompt=prompt, num_inference_steps=30, guidance_scale=3.5, ).images[0] return image input_img_path=ARGS.input_img_path input_instruction=ARGS.input_instruction prefix=" It is generation task." source_imgs = [] for path in input_img_path: img = load_image(path) # source_imgs.append(img) source_imgs.append(resizeinput(img)) prompt=infer_vlm(input_img_path,input_instruction,prefix) prompt = extract_gen_content(prompt) image=infer(source_imgs,prompt,height=ARGS.height,width=ARGS.width) output_path = ARGS.output_path image.save(output_path)